Corrective Action
Carondelet Division
Corrective Action Type NCR
Date 4-10-06 Revised 4-20-06
CA Originator C. Pud
Applies to: A-6 Coil

Description of Defect / Non-Conformance

Test bar from zone 1 failed elongation at -320 F. Result was 20% versus a minimum of 32%. The original set of three bars, Z-1, Z-2 and Z-3 were sent for testing. Z-1 failed for elongation, 26% vs 32% minimum and Z-3 failed for elongation 19% vs 32% minimum. All other results were acceptable. Retests were ordered. The second results were similar. Z-1 failed for elongation, 25% vs 32% minimum and Z-3 failed for elongation 13% vs 32% minimum, but broke outside the gauge length. The third set of bars was tested. Z-3 passed and Z-1 failed for elongation, 20% vs 32% minimum, but broke outside the gauge length. All other test results were acceptable. See attached test reports. A fourth set of 3 test bars were tested. All results were acceptable. See last report. Please note that the identification of these bars was not readable, but it is believed that they came from zones 1, 2 and 3.

Root Cause

See attached report, with attachments.

Corrective Action

Use A-6 as is.

Actual Completion Date

Completed 4/20/06.

Signed: C. Pud

CC: B. Craig, J. Edwards, E.J. Kubick, J. Markham, J. Galaske
Westmoreland Mecfianical Testing ed Research, Inc. P.O. Box 388 Westmoreland Drive
Youngstown, Pa. 15696-0388 U.S凡.
Telepfone: 724-537-3131 \quad Fax: 72
Telephone: 724-537-3131 Fax: 724-537-3151
Website: www.wntr.com
WMTHR is a tecfinical leader in the material testing industry.
CERTIFICATION
CERTIFICATION

MetalTek International The Carondelet Division
8600 Commercial Blvd. 8600 Commercial Blud.
Pevely, MO 63070-1528
Attention: Jim Galaske
TENSILE RESULTS: ASTM E21-05
Requirements: UTS ksi (Min 951Max --) 0.2% YS ksi (Min 721Max - -) 4D Elong. \% (Min 321Max - -) Modulus Msi (Min 211Max --)
SOAK TIME: 5 Minutes
SPEED OF TESTING: $0.003 \mathrm{in} / \mathrm{in} . / \mathrm{min} ., 0.05 \mathrm{in} . / \mathrm{min} . / \mathrm{in}$.

e|qeideoov :NOILISOdSIa
TENSILE RESULTS: ASTM E21-05 \quad (Min 211Max ---)
TENSILE RESULTS: ASTM E21-05
SOAK TIME: 5 Minutes

SPEED OF TESTING: $0.003 \mathrm{in} . / \mathrm{in} / / \mathrm{min} ., 0.05 \mathrm{in} . / \mathrm{min} / \mathrm{in}$.

Testing Speciafists for Aerospace, Automotive, and Material Testing Fields
Locations in Youngstown, LPA U.S.A. ~ Tel. (724) 537-3131 and
Section 1 of 1 . P.O. No. 19386
Requisition No. 7580
Westmoreland Mechanical Testing ef Research, Inc.

621-01 \& 621-02
Section 1 of 1
WMT\&R Report No. 6-25662
P.O. No. 19386
Requisifion No. 7580

*

$$
3
$$ …

 SOAK TMME: 5 Minutes
SPEED OF TESTING: $0.003 \mathrm{in} . / \mathrm{in} . / \mathrm{min}, 0.05 \mathrm{in} . / \mathrm{min} . / \mathrm{in}$.
MATERIAL: Metaltek CFBMNMnMOD

Requirements: UTS ksl (Min 951 Max $\rightarrow 0.2 \%$ YS ksi (Min 721Max $\rightarrow 4 \mathrm{D}$ Elong. \% (Min 32Wax \rightarrow) Modulus Msi (Min 21MMax -) SOAK TIME: 5 Minutes
SPEED OF TESTNG: $0.003 \mathrm{in} . \mathrm{in} . / \mathrm{min}, 0.05 \mathrm{in} . / \mathrm{m} / \mathrm{in} . \mathrm{in}$.
MATERIAL: Metaltek CFBMNMnMOD

Testing Specialists for Aerospace, ,Automotive, and Material \mathcal{F} esting Fields
Requirements provided by MetarTek international D-Ruptured outside middia hatf of gage length.

 Bantury U.K. ~ Tel. +44 (0) 1295261211

Westmoreland Mecfunical Testing or Research, Inc. P.O. Box 388
Westmorefand

Westmorefand Drive
Youngstown, Pa. $15696-0388$ U.S凡.
Telepfione: 724-537-3131 Fax: 724-537-3151
Website: wuwv.umtr.com
WWTR'S is a tecfinical leader in the material testing industry.
CERTIFICATION

MelalTek International The Carondelet Division 8600 Commercial Blvd.
$1-55$ Industrial Park

1-55 industrial Pavely, MO 63070-1528
Attention: Jim Gelaske All processes, performed upon the material as fociowing tasts were performed on this order. TENSILE

TENSILE RESULTS: ASTM E21-05
Requirements: UTS ksi (Min 95iMax $\rightarrow \mathbf{0 . 2 \%}$ YS ksi (Min 72MMax \rightarrow) 4D Elong. \% (Min 32Max \rightarrow) Modulus Msi (Min 21MMax -) Requirements:
SOAK TIME: 5 Minutes
SPEED OF TESTING: $0.003 \mathrm{in} . / \mathrm{in} / \mathrm{Jmin} ., 0.05 \mathrm{in} . / \mathrm{min} . / \mathrm{in}$.
MATERIAL: Metaitek CFBMNMnMOD
DISPOSITION: Acceptable

TENSILE RESULTS: ASTM E21-05 (Min 321Max --) Modulus Msi (Min 21Max --1)
TENSILE RESULTS: ASTM E21-05
Requirements: UTS ksi (Min 95IMax
SOAK TIME: 5 Minutes
SPEED OF TESTING: $0.003 \mathrm{in} . / \mathrm{n} / \mathrm{min}$., $0.05 \mathrm{in} / \mathrm{min} / \mathrm{in}$
MATERIAL: Metaltek CFBMNMnMOD

Testing Specialists for Alerospace, Automotive, and Material Testing Fiefds
Da
Section 1 of 1
WMT\&R Roport No. 6-26780
P.O. No. 19386
Requisition No. 7560

Subject:
R
Requirements: UTS ksi (Min 951Max -) 0.2% YS ksi (Min 72Max --) 4 D Elong. \% (Min 32 Max -)
SOAK TIME: 5 Minutes 4.1006 Aprll 10, 2006
 Ban6ury V.K. \sim Tele +44 (0) 1295261211

Addendum to CA 1671
Effect of Solidification Microstructure on Tensile Properties of Stellaloy
J. Edwards and C. Ruud, MetalTek International

Overview

The development of "Stellaloy" by MetalTek International commenced in 2003 with the modification of the base 316 material primarily for magnetic permeability requirements. Initial results demonstrated that this material is extremely robust mechanically at both ambient and cryogenic temperature ranges. Tensile properties gathered from integrally cast test specimens poured with the modules have shown variability. While most have far exceeded the specification minima, outliers have shown to demonstrate reduced elongation.

Background

Initial tests on the C5 casting showed that the elongation was lower in test bars associated with Zone1 than in other areas of the casting. Repeat tests showed the same result (Table I). Based on this result, the microstructure of the test specimen was examined and characterized compared to other test bars integral to the same modular coil casting. Results are shown in figures Lab report 05M1167, Figures 1, 2 and 3.

Similarly, testing of the A6 casting has shown a lower elongation in the test specimens associated with Zone 1. Testing was repeated in specimens from the same zone with reproducible results ($25-26 \%$ elongation at 77 K), although one test demonstrated a 20% elongation with breakage outside the gauge. Results of this test are shown in Table II and associated microstructures in Figures contained in WMTR\#6-26780.

The tensile test variation seems to demonstrate correlation to microstructure with finer grains and heavily dendritic structures showing lower elongation. Other properties are generally well above specification for both samples.

The attached test specimens from the production coils are machined to a 0.350 " diameter ("sub size" or SS) bar. The strain rate on the production components is $0.003 \mathrm{in} / \mathrm{in} / \mathrm{min}$ to yield and $0.05 \mathrm{in} / \mathrm{min} / \mathrm{in}$ to fracture.

Analysis
The test specimens are attached to metal feeders ("risers") in the modular coil casting mold. The attachment of these test specimens is largely determined by convenience due to accessibility of the feeder and orientation to a natural interface between mold components (cope, drag, and cores). Metal is introduced into the mold through a series of ceramic tubes from any of 3 ladles and mixes naturally upon entry into the mold cavity. Attached test specimens are filled by the molten metal at different temperatures and at different elapsed time from mold filling onset. The combination of elapsed time and geometric location of the attached specimens results in a range of solidification structures based on the superheat of the metal entering the specimen as well as the rate of heat extraction from the metal through the sand wall due to mold temperature surrounding the specimen (Table III). In general, cooler metal temperatures favor multiple nucleation sites while cooler mold temperatures promote nucleation at an accelerated rate on the mold
surface. Hotter metal temperatures result in fewer nucleation sites and more growth of individual grains during solidification.

Results

1. The properties measured from attached test specimens vary; however, exceed the specification minima in most cases.
2. Isolated test bars have shown depressed elongation values of approximately 25-29\%. Microstructural analysis of these test bars demonstrate that the microstructure is generally fine grained and may or may not contain heavily dendritic structure.
3. Test bar structure is the result of solidification physics of the test material and not associated with physical differences of Zone location.
4. Stellaloy continues to test well across a variety of microstructures at both 77K and RT.

Table III	High Metal Temperature	Low Metal Temperature
High Mold Temperature	Little incentive for nucleation and low thermal gradients. Large columnar grains.	Multiple nucleation sites within material, but little thermal gradient to mold. Creates finely dispersed equiaxed structure within metal with little correlation to mold wall.
Low Mold Temperature	Strong dendritic structure with multiple mold surface nucleation sites. Relatively "fine" appearance of closely spaced dendrites.	Multiple nucleation sites with primary sites on mold walls. Intraspecimen nucleation as solidification progresses. Broken dendritic with equiaxed.

\checkmark	6 W	$09969960{ }^{\circ}$	21＇z	06＇！	0z9z＇0	L09E＇0	OZてい	00¢81	L＇LE	tp	19	2＇911	†＇681	OZE＊	L09Ebの	\＆Z	9 V
\checkmark	6W	$86918960{ }^{\circ}$	S．＇Z	0\％＇b	cest＇0	LSE＇0	p6e6	O819	8 \％	08	6	0＇26	F＇291	OZE	909を的	ZZ	97
\forall	6W	2ヶLか9960＇0	$00^{\prime} \mathrm{Z}$	08＇！	2802＇0	90SE 0	Zsz6	OSIS	8＇sz	S9	＋9	896	E＇L91	OZE	s09Eba	12	97
URIV	jequin өupцpew	$\begin{aligned} & \text { ('U1'bs) } \\ & \text { een ' } \mathrm{H} \mu \mathrm{O} \end{aligned}$	（บ） 75 （euls at	（u） 70 © $\mathrm{H}_{\mathrm{O}} \mathrm{at}$	$\begin{gathered} \text { ('uif)'eld } \\ \text { feup } \end{gathered}$	$\begin{gathered} \hline \text { (ui) 'ela } \\ \text { 'вчо } \end{gathered}$		$\begin{array}{\|c\|} \hline 191 \\ \text { peoc } 7 \text { nun } \end{array}$	$\begin{gathered} \text { ISW } \\ \text { ennnpow } \end{gathered}$	$\begin{aligned} & \% \\ & \forall 8 \end{aligned}$	$\begin{gathered} \% \\ \text { Buog } \end{gathered}$	$\begin{gathered} 15 \mathrm{EY} \\ \mathrm{~S} \mathrm{~S} \% \mathrm{z}^{\prime} 0 \end{gathered}$	$\begin{gathered} \hline 181 \\ \text { SIn } \end{gathered}$	$\begin{gathered} \text { t. } \\ \text { dwel } \end{gathered}$	Jequan N ©o7nsel	vewpeds	$\begin{array}{\|l\|} \hline \mathrm{ON} \\ \mathrm{mon} \end{array}$

Requiroments：UTS ksi（Min 95Max \rightarrow ） $\mathbf{0 . 2 \%}$ Ys ksi（Min 721Max \rightarrow ） $\mathbf{4 D}$ Elong．\％（Min 321Max \rightarrow ）Modulus Mal（Min 211Max \rightarrow ）
SOAK TIME： 5 Minutes TENSILE RESULTS：ASTM E21－05 The following tests were performed on this order：MICRO and TENSILE esseooud ily ：polqng

 MetarTek Intemational
The Carondelet Division

