NCSX Pumping Speed

Note: All pumping speeds and conductances are for air and in l/s $1/C_T = 1/C_1 + 1/C_2 + \dots + 1/C_n$ (for conductances and pumps in series) $C_T = C_1 + C_2 + \dots + C_n$ (for conductances and pumps in parallel) Reference: A. Roth, Vacuum Technology 3rd Edition

Effective pumping speed of 2 TMPs in parallel to the large pumpduct

	1st pump to 24" main duct	2nd pump up to 24" main duct
TMP=	1,450	1,450
Component	TIV	TIV
Conductance diameter in inches=	10.0	10.0
Conductance length in inches=	5.5	5.5
Conductance =	14,196	14,196
Component	Elbow and Spool Piece	Elbow and Spool Piece
Conductance diameter in inches=	13.5	13.5
Conductance length in inches=	32.0	32.0
Conductance=	6,003	6,003
Effective pumping speed of each TMP to duct=	1,079	1,079

Effective pumping speed of 2 TMPs in parallel to main duct $(S_1) = 2,158$

Calculation of conductances in series

Component Conductance diameter in inches=	Vertical 24" duct 23.25
Conductance length in inches= Conductance=	10,903
Component	Transition to NB duct
Conductance diameter in inches=	13.5
Conductance length in inches=	22
Conductance=	8,732
Component	Vertical part of NB duct
Length of 1st side in inches=	13.5
Length of 2nd side in inches=	20.0
Conductance length in inches=	17
Conductance=	29,848

Component	Horizontal part of NB duct
Length of 1st side in inches=	13.5
Length of 2nd side in inches=	33
Conductance length in inches=	10
Conductance =	99,522
Component	NB port spool piece extension
Conductance diameter in inches=	23
Conductance length in inches=	23
Conductance =	41,303
Component	NB port spool piece
Conductance diameter in inches=	23
Conductance length in inches=	6
Conductance =	158,330

Effective conductance of components in series from 24" main duct to the VV (C_1) = 3567

Approximate effective NCSX pumping speed $\{S_{eff}=(S_{1*} C_1)/(S_1+C_1)\} = 1,345$