APPENDIX C

NCSX Vacuum Vessel Support Fixture Local Analysis

To overcome friction of support shaft

4750 Total weight of VV assembly, lbs
0.15 Coef of Friction (assume oil Ilubricant)
712.5 Friction force (Ft), lbs
6 Hand wheel radius (R), in
2.75 Worm wheel shaft radius (L)
48 Nb of worm wheel teath (n)
6.8 Hand wheel fource to overcome friction load (Fe), lbs
Fe = Ft x R / (n x L)

For added services on one side

- 100 Weight of services, lbs 21.3 CL distance to services, in
- 2130 Torque due to services
- 7.4 Additional hand wheel load due to services

Force needed to accelerate VV

- 43.76 Radius of gyration about shaft axis, in
 12.3 VV mass, lbf/(in/sec^2)
 2 Assumed angular acceleraton, degrees/sec^2
 0.03491 Angular acceleratin, radians/sec^2
 822.6 Torque reqd, T=m(K^2)α, in-lbs
 2.9 Hand wheel load to overcome part inertial
 - 17.1 Total hand wheel load, lbs
- 0.49701 worm shaft polor moment of inertia, J (pi x D^4/32)308.8 Max worm shaft shear (T r / J), psi

1 revolution of worm results in 1/48 rev of wheel 4 turns of worm relusts in 30° turn of wheel

Single column stress

Center support column gerometry, 6" x 4" x .25" thk 4.59 Area of center support column, in^2 517.4 Axial stress, P/A, psi

6 x 4 x. 25"

Support leg lateral support capability

Six 1/2" dia x 2" long Hilti anchor bolt per support 6751 Hilti pullout alowable for 4000 psi concrete, lbs Moment capabiltiy of 3 pair of Hilti's with a 9"

182277 separation, in-lbs

Maximum permissible axial load on one support

859 assuming that 1/3 of the Hilit's fail, lbs

