<i>TO</i> :	P. Heitzenroeder
FROM:	L. Dudek

SUBJECT: WBS 6101 & 6301 NCSX Cooling Water and Utility Systems

Date: August 15, 2008

<u>Scope</u>

This work covered the design, fabrication and installation of the Cooling water system and Utility Systems. The utility system consisted of a basic gaseous nitrogen and instrument air system for general experimental use.

<u>Status</u>

This work never proceeded beyond the conceptual design phase.

Interfaces

The cooling water system interfaces to the vacuum system to supply the required cooling water and the HVAC chilled water supply system in the CS building which is the ultimate heat sink. The utility systems interface to the facility nitrogen and air systems.

Specifications

None

Schematics and PIDs None

<u>Models</u> None

Drawings

None

<u>Analyses</u>

None

<u>Testing</u>

None

<u>Costs</u>

None

Remaining Work

This work needs to proceed from concept through fabrication and installation.

Lessons Learned:

None applicable

Conclusion: Need to work closely with the HVAC facilities engineer to work out detailed location of tie in to system for the cooling water system.

NCSX Vacuum Water & Utility Gas

L. E. Dudek

SC Project Review of NCSX, April 8-10, 2008

Outline

- Scope / Requirements
- Interfaces
- Design plans
- Material and Labor Estimates
- Schedule
- Risks and uncertainty

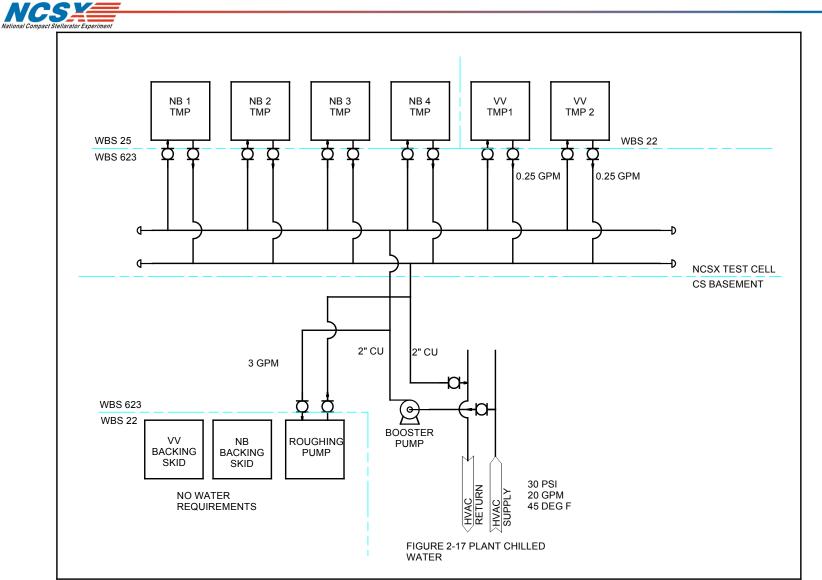
Scope

- Water Cooling Systems
 - Provide cooling water for the Vac Pumping System
 - Provide drops for future NB Vac Pumps
- Utility Gas Systems
 - Compressed air manifold
 - Vacuum Vent piping

Water System Requirements

Vacuum Pumping System Water

- Requirements
 - Load: 5-10 gpm
 - Fluid: Treated Water
 - Pressure: 140 psig
 - Temperature: Ambient
 - Controls: Local, Manual control of pump
- Provide a small loop <10 gpm
 - Includes design, fabrication and installation
 - Install Heat exchanger & pump



- Vacuum Pumping System
 - Interfaces via the cooling water connection to the vacuum pumps below the NCSX
- Heat sink
 - Tie in to existing HVAC cooling water system
 - Connection in the NCSX Test Cell Basement
- Power
 - Local power supplied from local MCC (<10 hp)
- Mechanical
 - Interfaces to the machine platform for support of piping

Water System Design Plan

Water System Estimate

Task	41 M&S	EMEM hrs	EMSB hrs	EMTB hrs	EASB hrs
Design					
Conceptual Design		40			20
Layout Drawings		10			20
Final Design		40			160
Fab / Installation				265	
Piping Estimate	\$22,970				
Supervision		50	30		
Test, PTP		8		40	

Water System Material and Labor Estimate

riment		
Component	*Total Labor Manhours	*M&S (\$) (in 2002 \$)
Copper Piping	38	\$3,970
Equipment	133	\$6,948
Adders (see below)	94	5,459.1
ESTIMATE TOTAL	265	16,377.3
CURRENT Year / No. Yrs.	2007	5
ESCALATED TOTAL	265	\$22,970

*Rates taken from 2002 RS Means Plumbing Estimating guide

NCS

Water System Material and Labor Estimate

15%	Overhead Work (15% Labor) *
10%	Piping Insulation (10% Material) *
40%	Added for Fittings (% Labor and Material) *

*Rates taken from 2002 RS Means Plumbing Estimating guide

• Work performed by PPPL Techs / Engineers

Water Systems Schedule

- Design work starts May 2010
- Installation is completed in Feb 2011 in time for Vacuum System Ops
- This work is off the critical path by 100 days

6	61 - Water Systems					
	Job: 6101 - W	ater Systems-DUDEK				
	613 - Vacuum P	umping System				
			Dur	Start	Finish	Float
	6101-100	Design Vac Pmp water sys	45	03MAY10*	06JUL10	100
	6101-105	Procure Hardware and materials Vac Pmp water	90	07JUL10	10NOV10	100
	6101-110	Fabricate and Install Vac Pmp water sys	40	11NOV10*	17JAN11	100
	6101-115	Test Vac Pmp water sys	22	18JAN11	16FEB11	100

Water Systems Risk and Uncertainty

Uncertainty of the Estimate	Evaluation	Comment
Design Maturity	Medium	Design not complicated, but still in a conceptual stage
Design Complexity	Low	Standard piping - off-the- shelf components
Uncertainty Range	-10%/+15%	

No residual risk impacts were identified

Gas Utilities Requirements

- Requirements
 - Flavors: Compressed Air, Vac. Vent
 - Pressure: 90 psig , 14.7 psia
 - Design: Copper manifold

Gas Utilities Interfaces

- Interfaces to the atmosphere outside the building (rooftop vent)
- Manifold around machine interfaces to the platform for support
- Vent manifold interfaces to the vacuum vessel pumping system

Gas Utilities Estimate

	M&S	EMEM hrs	EMTB hrs	EASB hrs
Preliminary Design		60		80
Final design		20		80
Installation		40	322	
Procurements	\$24,398			
Pre Ops Testing		8	40	

- Estimate: Use past experience on NSTX, Cost Estimating Guide
- Work performed by PPPL Techs

Gas Utilities Schedule

- Design work starts Oct 2010
- Installation is completed in Apr 2011 in time for Vacuum System Ops
- This work is off the critical path by 134 days

63 - Utility Syste	3 - Utility Systems					
Job: 6301 - Uti	lity Systems-DUDEK					
		Dur	_	Start	Finish	Float
6301-001	Vac Vent and Air sys- Prelim Dsn	20		01OCT10*	280CT10	134
6301-005	Vac Vent and Air sys- PDR	1	R	29OCT10*	29OCT10	134
6301-009	Vac Vent and Air sys- Final dsn	10		01NOV10*	12NOV10	134
6301-010	Vac Vent and Air sys- FDR	1	R	15NOV10*	15NOV10	134
6301-013	Vac Vent and Air sys- Procure hardware and	60		16NOV10	17FEB11	134
6301-017	Vac Vent and Air sys- Fabricate and Install	40		18FEB11*	14APR11	134
6301-020	Vac Vent and Air sys-Test	10		15APR11*	28APR11	134

Utility Systems Risk and Uncertainty

Uncertainty of the Estimate	Evaluation	Comment
Design Maturity	Medium	Design not complicated, but still in a conceptual stage
Design Complexity	Low	Standard piping - off-the- shelf components
Uncertainty Range	-10%/ +15%	

No residual risk impacts were identified

