

NCSX Startup (WBS 85)

C.A.Gentile

NCSX CD-4 Startup

NCSX Startup

- WBS 85 Objective = Safely bring NCSX on-line
- Concerns = People Safety, Environmental Safety, Machine Safety
- WBS 85 has two main components = Documentation + Safe Startup
- Startup Strategy = 10 week Startup Plan w/ First Plasma @ week 7
- Startup Documentation = Slides 7 & 8
- Startup Staffing and Positions = Slide 9
- Basis of Startup cost & staffing requirements = TFTR (during D-T transition),
 NSTX
- Risks and Mitigation = Slide 10
- Strong emphasis on pre-operational system testing and Activity Certification Committee (ACC) reviews. ACC is an independent cognizant group made up of PPPL and PSO membership. ACC performs detailed technical reviews including physical walk-down of reviewed system(s). Successfully implemented during NSTX startup.

What Startup Will Demonstrate

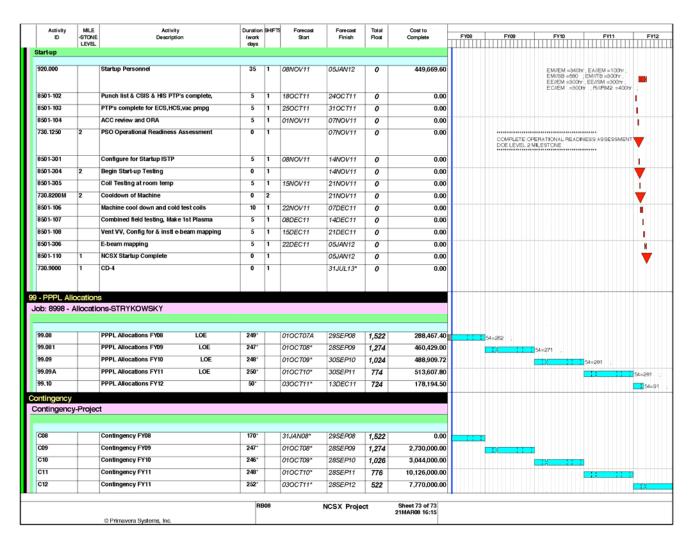
- * Ohmically heated (first) plasma
- 1.4 m major radius
- ≥ 0.5 T magnetic field
- ≥ 25 kA plasma current
- coils operated at cryogenic temperatures
- modular coils operated at 12 kA
- TF coils operated at 2 kA
- PF coils operated at 3 kA
- PF5 & PF6 operated at 2 kA
- central solenoid operated at 12 kA
- ability to maintain high vacuum in vv
- ability to bake at 150 C
- ability to perform (multiple) e-beam (surface) mapping

^{*} see Hutch Neilson presentation for additional startup parameters

WBS 85 Schedule - 1

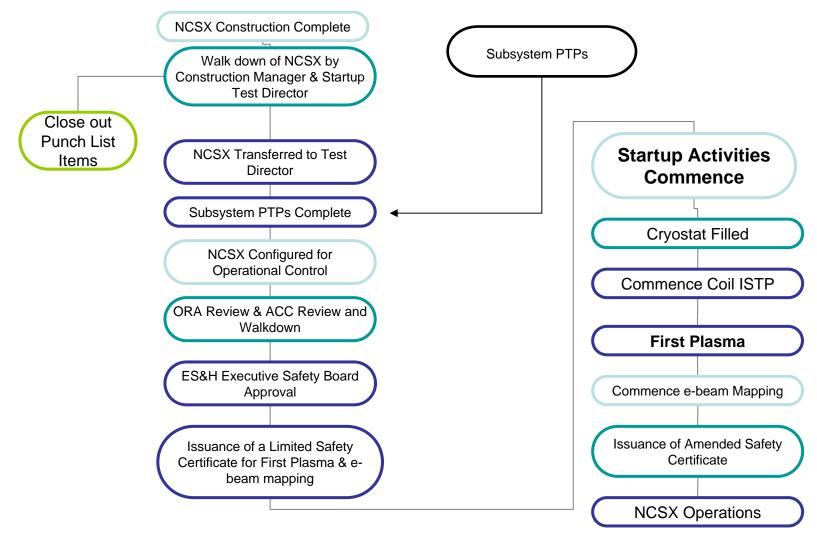
ISTP

Activity	MILE -STONE LEVEL	Activity Description	Duration (work days	SHIFT	Forecast Start	Forecast Finish	Total Float	Cost to Complete	FY09 FY10 FY11 FY
METFY08RX		Support FPA Station 3	339		05NOV08	24MAR10	0	90,857.10): Keepellis = 240 hr ea//em=240hr
METDCP-5	3	Dimensional control plans for station 5	40		11JUN08	06AUG08	161	21,252.00	EA//EM =120hr;
STAT5PREP		Station 5 preparations	30		13APR09	22MAY09	50	22,491.60	ellis =120
METFY09		Support FPA Station 5	325		02MAR09	17JUN10	44	91,380.18	ellis =240;ea//em=240
STAT6PREP		Station 6 preparations	130		29MAY09	02DEC09	45	45,417.43	ellis=240
METDCP-6	3	Dimensional control plans for station 6	80		10AUG09	02DEC09	45	45,688.83	EA//EM =240hr ;
METFY10		Support Final Machine Assy station 6	508		27OCT09*	09NOV11	746	95,643.02	ellis =240,ea/lem=240
Job: 8215 Pla	nt Des	sign							
FY07 Rebaselin	e Exerci	ise							
8210-07		Update plant model	19		24 (44)00	265500	4.070	15 225 50	
8210-07		Plant Design	826*		31JAN08	26FEB08	1,673	15,225.60	EMI/EM =40hr : EAI/S9 =80hr : EMI/EM = 05 fte; EAI/
8210-08		Plant Design	826		01OCT07A	31JAN11	945	185,670.65	EM/SM = 03 fte
Startup Docum	entation				I	Language			
8501-101		SAD NCSX Safety Assessment Document (SAD)	45		03NOV08*	15JAN09	454	48,131.20	EM/EM =160hr; EM//SM =160hr;
8501-129		NCSX-XX, Administrative Control of Procedures	30		24NOV08	15JAN09	440	24,065.60	EM/EM =80hr; EM//SM =80hr;
8501-133		OP-AD-39, Conduct of Operations	10		16JAN09	29JAN09	440	6,016.40	EMI/EM =20hr; EMI/SM =20hr;
8501-137		OP-AD-56, Cntrl Equipt & Syst Status (chain of c	10		23JAN09	05FEB09	440	6,016.40	EM/EM =20hr; EM/SM =20hr;
8501-141		OP-AD-24, Cntrl Workplace Cleanliness D-Site Exp	10		30JAN09	12FEB09	440	6,016.40	EMI/EM =20hr; EMI/SM =20hr;
8501-145		OP-AD-31, D- Site Fire Watch Requirements	10		06FEB09	19FEB09	440	6,016.40	<pre>@EM//EM =20hr; EM//SM =20hr;</pre>
8501-149		OP-AD-03, Experimental Proposals for NCSX	10		13FEB09	26FEB09	440	6,016.40	EM/EM =20hr; EM/SM =20hr;
8501-153		OP-AD-117 Operation of the NCSX Access System	10		20FEB09	05MAR09	440	6,016.40	<pre>[]EMI/EM =20hr; EMI/SM =20hr;</pre>
8501-157		NCSX-OP-XX, Prep of Exper Areas for Machine	30		27FEB09	09APR09	440	18,049.20	EM/EM =60hr; EM//SM =60hr;
8501-161		NCSX-OP-XX, Operation of the NCSX TVPS	30		20MAR09	30APR09	440	18,049.20	EM/IEM =60hr; EM/ISM =60hr;
8501-165		NCSX-OP-XX, Testing NCSX HIS Safe for Access	30		10APR09	21MAY09	440	18,049.20	EM//EM =60hr; EM//SM =60hr;
8501-169		NCSX-OP-XX, Testing the NCSX Emergency Stop	30		01MAY09	12JUN09	440	18,049.20	EM//EM =60hr; EM//SM =60hr;
8501-173		NCSX-OP-XX, NCSX Training Matrix	30		22MAY09	06JUL09	440	18,049.20	EM//EM =60hr; EM//SM =60hr;
8501-177		NCSX-OP-XX, NCSX Ops Guide -Startup and	30		15JUN09	27JUL09	440	18,049.20	EMI/EM =601+; EMI/SM =601+;
8501-181		NCSX-OP-XX, HPP Daily Operations	20		14JUL09	10AUG09	440	12,032.80	EM/EM =40hr; EM/SM =40hr;
8501-185		NCSX-OP-XX, ACP & PDP Trip Control Settings	20		28JUL09	24AUG09	440	12,032.80	EM//EM =40hr; EM//SM =40hr;
8501-189		NCSX-OP-G-XX Preparation for NCSX pumpdown	30		11AUG09	22SEP09	440	18,049.20	EM/EM =60hr; EM/SM =60hr;
8501-193		NCSX-OP-XX Helium H/C System Operations	30		01SEP09	13OCT09	440	18,207.42	EM/EM =60hr; EM//SM =60hr;
8501-197		NCSX-OP-G-XX Daily Hi-Pot Test Vacuum Vessel	30		23SEP09	03NOV09	440	18,471.12	■EM#EM =60hr; EM#SM =60hr;
8501-201		ISTP-NCSX-01 Coil Energization Tests	40		14OCT09	10DEC09	440	24,768.80	EM//EM =80hr; EM//SM =80hr;
8501-205		OP-ECS-245 FCPC Daily Startup/Shutdown	20		25NOV09	05JAN10	440	12,384.40	EMI/EM =40tr; EMI/SM =40tr;
0001200		NCSX-XX Leak Checking of NCSX	20		11DEC09	19JAN10	440	12,384.40	M EM/EM =40hr; EM/SM =40hr;
8501-209	1		1						



WBS 85 Schedule - 2

ISTP



Startup Flow Chart

Documentation needed for Startup

- NCSX Safety Assessment Document (SAD)
- NCSX Integrated System Test Procedure (ISTP)
- Completed (sub-system) Pre-operational Test Procedures (PTP)
- NCSX Configuration and Interface Control Procedures
- NCSX Training Matrix
- First Plasma sub-system support procedures
 Torus VV pumpdown, cryo operations, search & secure procedures, power system procedures, coil operating procedures, bakeout procedures, control system procedures.

Startup Documentation Effort

- Documentation Costs = \$345 K
- Documentation Development Team
- Engineer @ 28.5 weeks (1140 hours)
- Senior Lab & Shop @ 28.5 week (1140 hours)
- Total for documentation development = 2280 hours
- Equivalent ~ 1.10 person years of effort

Startup Staffing and Positions

- Startup Team costs = \$ 450 K
- (1) Test Director = 10 weeks @ 100 % FTE
- (1) Chief Operations Engineer = 10 weeks @ 85 % FTE
- (1) Project Engineer = 10 weeks @ 75 % FTE
- (2) Machine Technicians = 10 weeks @ 85 % FTE
- (1) FCPC Technician = 10 weeks @ 75 % FTE
- (1) Cryo System Technician = 10 weeks @ 75 % FTE
- (1) AC Power Engineer = 10 weeks @ 75 % FTE
- (1) Computer Engineer = 10 weeks @ 75 % FTE
- Total Startup hours = 2720 hours
- Equivalent ~ 1.3 person years of effort to safely startup NCSX

Risks & Mitigation

- Incorrectly connecting power supply to coil leads - <u>Coil leads to be clearly designated prior to startup,</u> <u>low power compass test.</u>
- Ground Faults <u>Check for ground fault conditions</u> during assembly (pre-startup) to mitigate impact on startup.
- Loop Faults <u>Check for loop faults during assembly</u> (pre-startup).
- Control System <u>Pre-test wave forms and clock</u> cycles to ensure control system operation.
- Loss of sub-system components (i.e., pumps) repair / replace.

Conclusion

- Based on the startup of similar machines at PPPL NCSX startup requirements are understood. Good experience base and support for e-beam mapping from colleagues at ORNL, UW, Auburn.
- NCSX startup concerns are mostly about safety (people, environment, machine).
- Success of startup the result of prerequisite PTP's, ACC reviews, ES&H Executive Safety Board review, safety certificate issuance, closing out post construction punch list items.
- Completion of NCSX ISTP will transition the machine from startup to operational.

