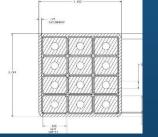
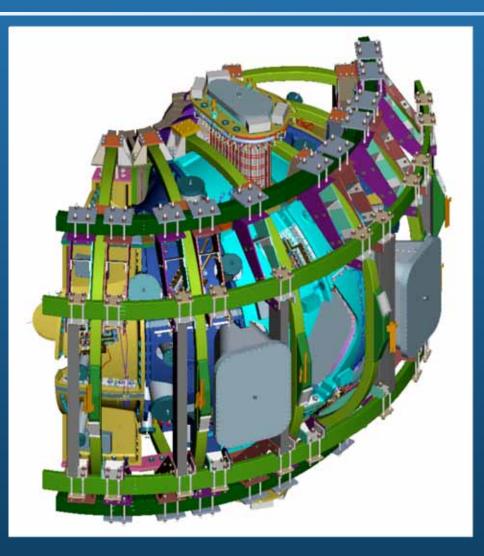
TF Coil Subassembly


NCSX

Coil Winding + Wedge Castings = IF Coil Subassembly

- SS castings on leading edge
- 3x4 Cross-section
- Solid Copper Conductor
- LN2 Cooled



Structure Reacts Critical Loads

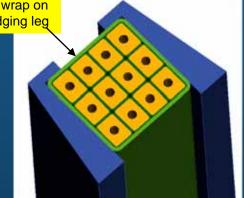

NCSX

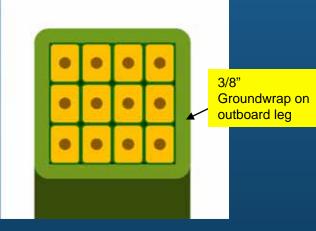
- TF Coils Assembled over Modular Coils
- Centering forces reacted through wedging
- Structure mounted to modular coil winding form reacts out of plane loads

Jack Screw Device Added Pulls Coil Forward

NCSX

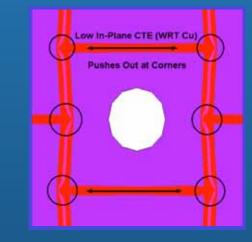
Winding Pack Insulation Scheme


NCSX


TF Turn Insulaton								
1/2 Lap Layer Kapton	Kapton	0.002		7.8				
	Adhesive	0.0015						
	Kapton	0.002		0				
	Adhesive	0.0015						
	Glass	0.007		0.63				
	Glass	0.007		0.63				
	Glass	0.007		0.63				
	Glass	0.007		0.63				
	Glass	0.007		0.63				
	Glass	0.007		0.63				
		0.049	Inches	11.58	KV			
Ground Wrap TF								
Twenty One 1/2 Lap Layer	Glass	0.009		0.81				
x 21	Glass	0.009		0.81				
		0.375	Inches	33.8	KV			

• Kapton Tape applied directly to conductor to enhance turn to turn dielectric standoff and allow for decoupling of insulation from conductor during cool down.

1/8" Groundwrap on inboard wedging leg


- Inner TF leg ground wrap thickness is 1/8"
- Outer leg of TF coil allows for the use of tough 3/8" ground wrap

Stress Analysis Insulation - Testing

- Analysis showed risk of insulation cracking due to thermal stresses
- Original Plan to resolve thermal stress on winding pack issues
 - Remove Kapton to increase adhesion
 - Test to provide tensile stress allowables
 - Required greater than 10 MPa
- Results from CTD Testing Yielded Poor Results for Tensile strength / adhesion

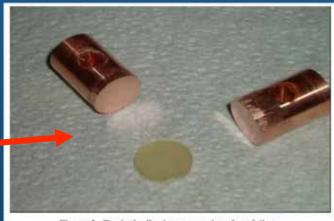
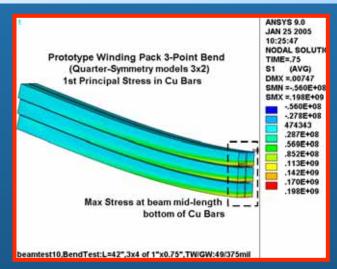


Figure 5. Typical adhesion to metal surface failure.

PDR Winding Pack Insulation Scheme

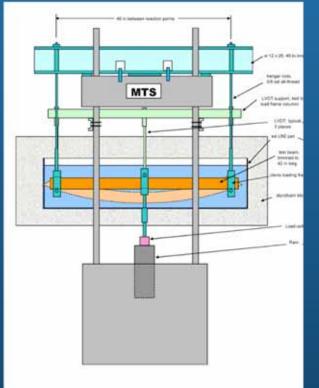
- Original insulation scheme was reevaluated and evolved to address thermal stress issue
- ½ Lap Layer of Kapton to provide primary dielectric strength
- System to allow loss of adhesion to conductor
- Releasing Kapton layer resolves thermal stress issue.
- Analysis verifies that coil stiffness is adequate after releasing insulation from conductors
- Prototype testing proved out insulation winding pack approach


Prototype Bar Testing

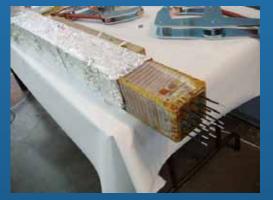
NCSX

- Prototype bar underwent both thermal and stress cycling
- Proved durability of winding pack design
 - mechanical properties maintained after more than 2x stress at life
 - successful hipot tests

• Proved validity of FEA as measured by:


- bench mark of mechanical properties to Bar model before and after cycling of prototype
- While the test bar was not identical to the PF geometry cyclical stresses tested were 5x greater than PF cyclical stresses
- Insulation scheme is identical to PF Coils

Testing Prototype Bar, Thermal / Fatigue/ Electrical


NCSX

Test Equipment

Sealed Insulation box with test bar Inside

Bar Fitted with Probes for Electrical Testing after Cycling

Test Bar in the fixture with insulation box

Lead Redesign – PDR Design = High Stresses

NCSX

• PDR Lead Design Produced stresses as high as 300MPa

MAR 31 2005

NODAL SOLUTIO

SINT (AVG) DMX =.001246

SMN =.407E+07 SMX =.307E+09

> .407E+07 .378E+08 .715E+08

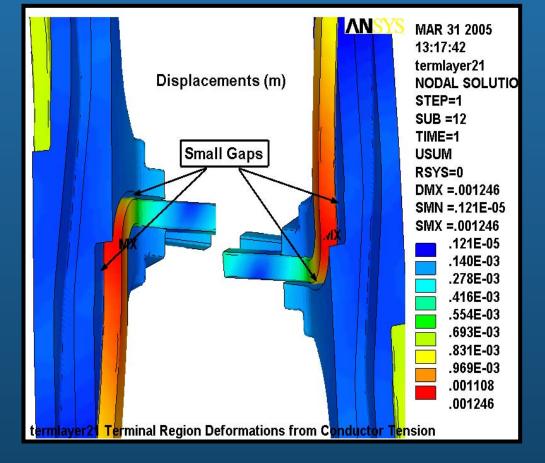
> .105E+09 .139E+09 .173E+09 .206E+09 .240E+09 .274E+09 .307E+09

13:28:24 termlayer21

SUB =12

TIME=1

• Lead Area was redesigned and analyzed


Tensile Loading Produces Bending

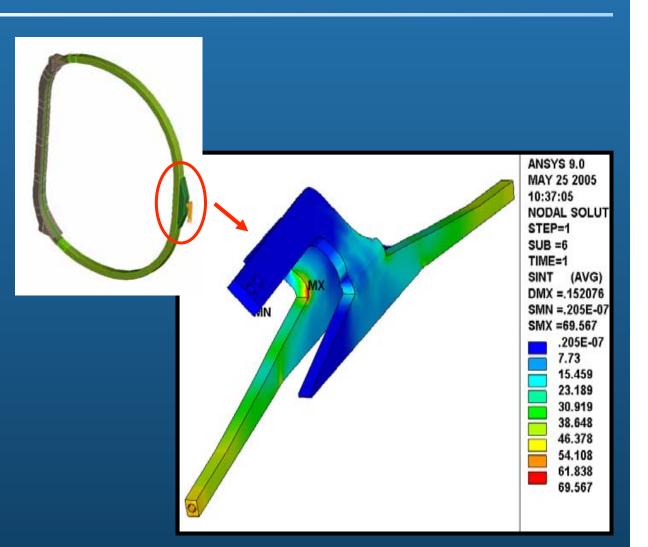
3" bend radius

Irom Conductor Tensio

Stresses on the inside surface of

termlayer21 Terminal Str

Lead Redesign – Stress Analysis Cu

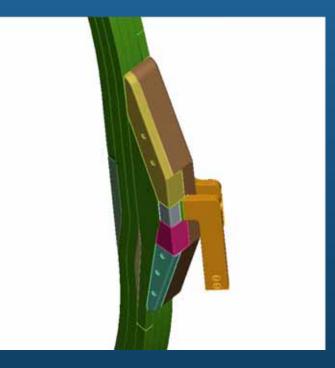

NCSX

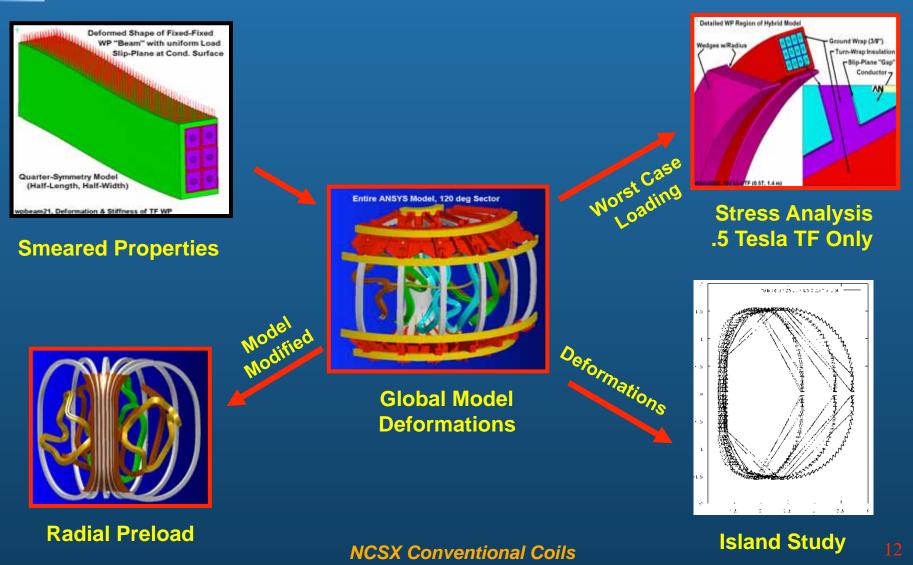
• Redesigned lead area lowers maximum copper stress from 300 MPa to 70 MPa

• This compares to a maximum allowable stress of 270 MPa (1.5Sm)

• The equivalent alternating stress is only 27 MPa which easily meets the fatigue design requirement

• Annealing of Braze area is addressed in specification


Lead Design – FDR Design


NCSX

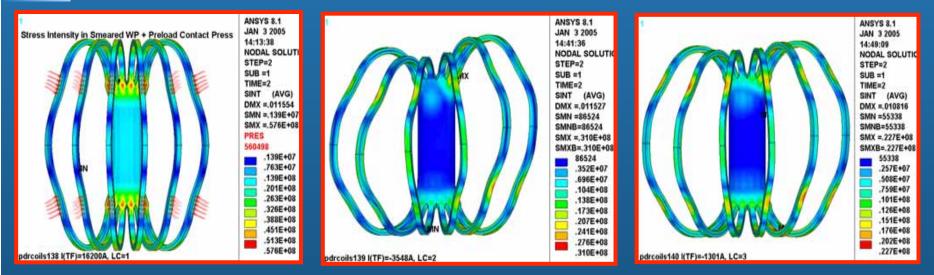
• G11 Pins help carry shear load

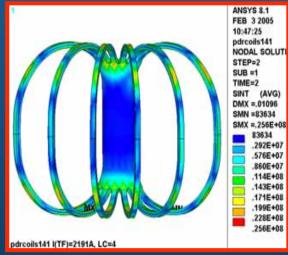
- Lead Spur added to distribute stresses
- Lead Blocks transfer load to opposing lead spur

Evolution of Structural Design Calculations (PDR)

Deflections Produce some non-ideal Flux Islands (as analyzed by A. Brooks)

NCSX


* Global requirement is that toroidal flux in island regions shall not exceed 10%
* Leads and Transitions must have a less than 1% effect on toroidal flux in island regions


- Effects of islands analyzed for original and new insulation scheme
- Island size due to these deflections are within 1% requirement for individual systems chosen to satisfy overall 10% requirement
- Separate analysis shows islands from leads and transitions are well below 1% requirement

Island Siz	e, % Total Flux				
			Resonance		
ID	Scenario	3/5	6/10	3/6	
tfdisp25	TF @ 0.5T	0.02	0.00	0.00	2x6 Winding
tfdisp26	1.7T Ohmic	0.23	0.10	0.11	10/26/04
tfdisp27	2.0T High Beta	0.10	0.04	0.04	
tfdisp29	TF @ 0.5T	0.01	0.00	0.00	3x4 Winding
tfdisp30	1.7T Ohmic	0.35	0.13	0.15	12/16/04
tfdisp31	2.0T High Beta	0.24	0.08	0.09	12/10/04
tfdisp38	TF @ 0.5T	0.02	0.00	0.00	3x4 Winding
tfdisp39	1.7T Ohmic	0.40	0.13	0.15	U
tfdisp40	2.0T High Beta	0.27	0.08	0.09	12/30/04

Global Model Gives Indication of Relative Stress Level Among Worst Case Time Points

NCSX

LC1(0.5 T TF): 58 MPa LC2 (1.7T Ohmic): 31MPa LC3(2T High-β): 23 MPa LC4(320kA Ohmic): 26 MPa

TF Manufacturing Process

- Winding
- Induction Brazing
- Wedge Magnetic Permeability
- Vacuum Impregnation
- Coil Geometry Maintained Within Tolerances
- Precise Wedge Cut of front leg
- Electrical Testing Successful
- Final Hi-Pot Testing at Cryogenic Temperature

Fabrication of TF Coil Assemblies

NCSX

First Coil -Final Cryogenic Electrical Testing

Second Coil — Machine cut of Wedge

Third Coil ready for Vacuum Impregnation

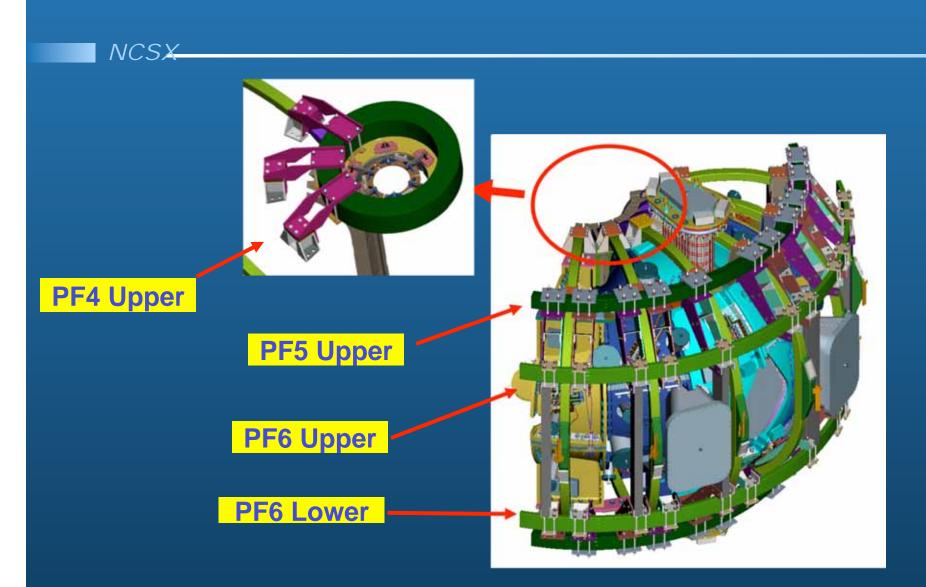
Fourth Coil **•** Winding

Planarity Geometry Check

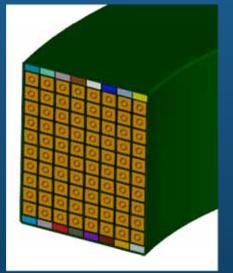
NCSX

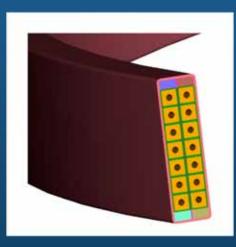
• Height of center line of coil checked against the center plane of the coil and deviations are recorded. quality assurance

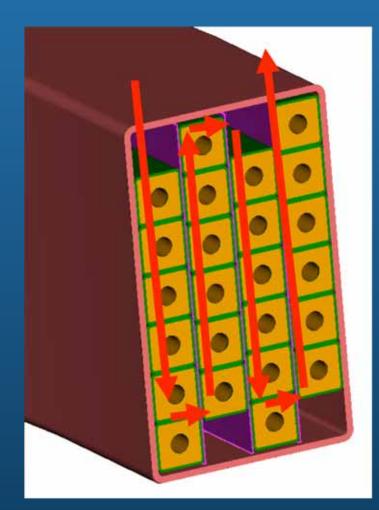
Wedge Geometry


- The remaining coil geometry is located with respect to the axis described by the intersecting wedge planes by referencing back to an inspected point on the fixture
- The true position tolerance with respect to flatness and planarity of the wedge cut is inspected using a probe on the CNC machine

A precisely machined wedge template is used to inspect the wedge angle as well as the location of coil with respect to the intersecting axis formed by the angle

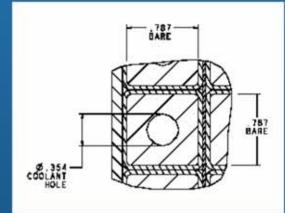


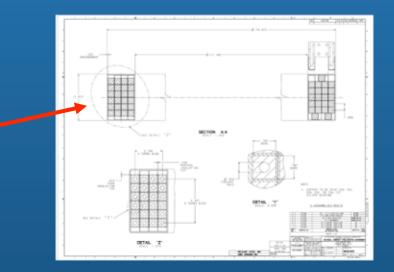


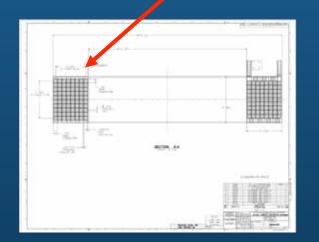

PF Coil Cross Section

NCSX

- **PF Coils of conventional design**
- Rectangular cross section
- Round Geometry

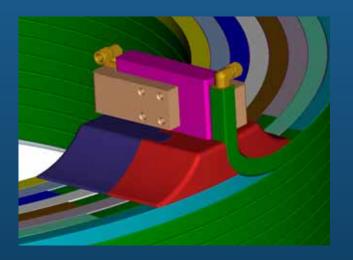


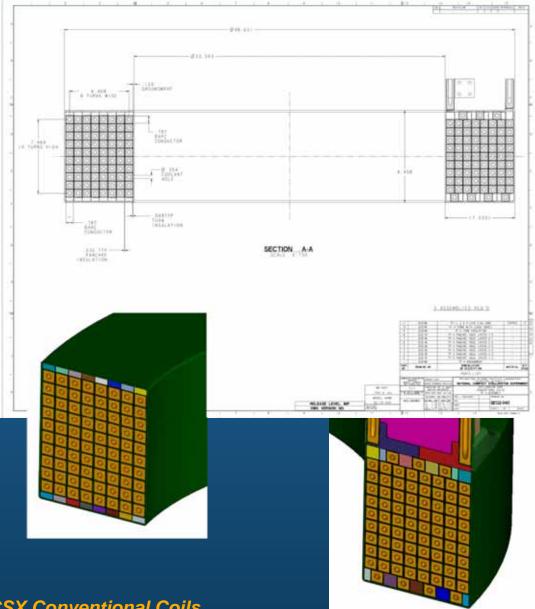




PF Coils, Conductor

NCSX

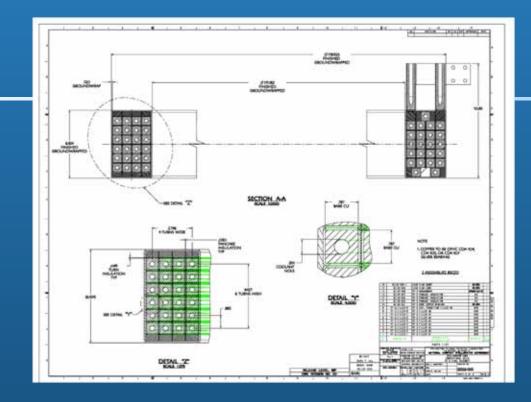


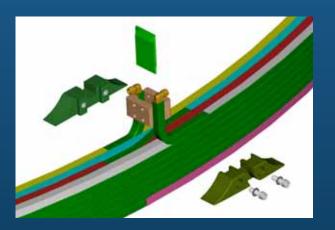


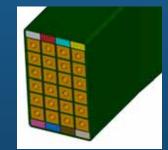
• A single copper conductor size is used for all three different types of PF coils to simplify their manufacture and reduce costs.

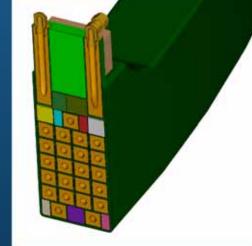
PF4 Geometry

- NCSX
- Turns •
 - **= 80**
- **Outer Diameter** ۲ = 49 inches
- **Cross Section** ٠ = 10 x 7.5 inches
- **Conductor Length** • = 861 ft

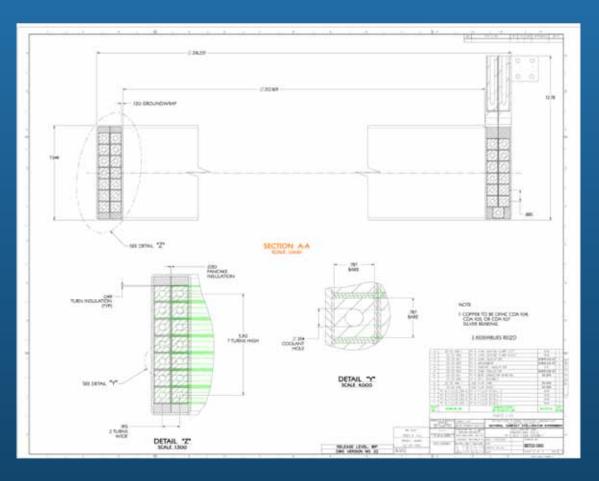

PF5 Geometry

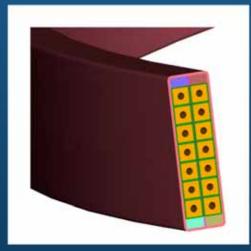

NCSX


• Turns


= 24

- Outer Diameter = 179 inches
- Cross Section = 7.7 x 6.4 inches
- Conductor Length = 1100 ft

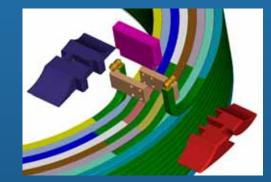

PF6 Geometry

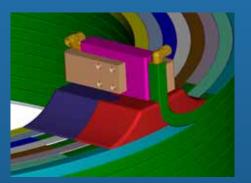

NCSX

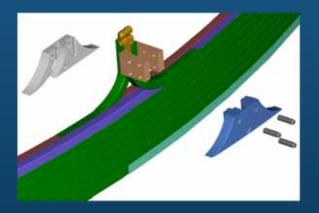
• Turns

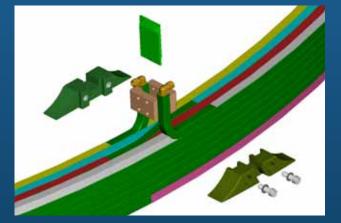
= 14

- Outer Diameter = 216 inches
- Cross Section = 7.3 x 2.0 inches
- Conductor Length = 786 ft






Lead Blocks

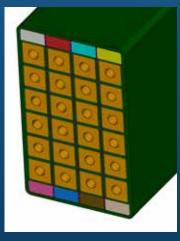

NCSX

- Leads Locked together by G11 Blocks
- Forces on leads very low on the order of 10 lbs excluding exterior fields

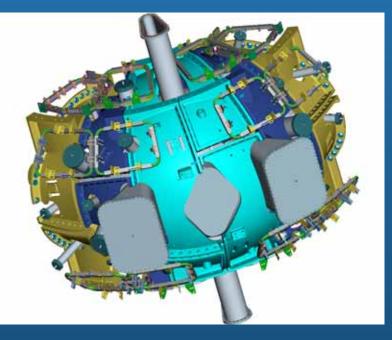
Winding Pack Insulation Design

NCSX

PF Turn Insulaton					
1/2 Lap Layer Kapton	Kapton	0.002		7.8	
	Adhesive	0.0015			
	Kapton	0.002		0	
	Adhesive	0.0015			
	Glass	0.007		0.63	
	Glass	0.007		0.63	
	Glass	0.007		0.63	
	Glass	0.007		0.63	
	Glass	0.007		0.63	
	Glass	0.007		0.63	
		0.049	Inches	11.58	ΚV
Ground Wrap PF					
Twenty One 1/2 Lap Laye	Glass	0.009		0.81	
x 21	Glass	0.009		0.81	
		0.375	Inches	33.8	KV


Kapton Tape applied directly to conductor to enhance turn to turn dielectric standoff and allow for decoupling of insulation from conductor during cool down.

 Generous 3/8" of ground wrap applied to provide "bullet proof" protection to prevent unforeseen potential damage



Manufacturability - Manufacturing Tolerances

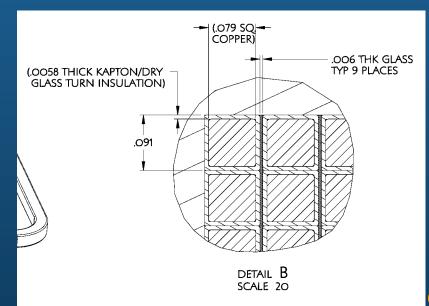
- Requirement = In plane and out of plane installed perturbations shall be less than +/- 3mm
- Coil specification will require +/- 1.5mm using half of the allowable installed tolerance budget
- D Shaped NCSX TF Coils have been manufactured to about a +/-1.5mm tolerance in their free state but a guarantee of that over the larger diameters for the PF Coils is not guaranteed
- Coil as it is removed from the VPI mold will be within +/- 1mm but coil is likely to distort in it's free state
- Support structure must be capable of re-shaping coil as required
- Coils can be positioned during installation to average out of tolerance conditions

Trim Coil Configuration

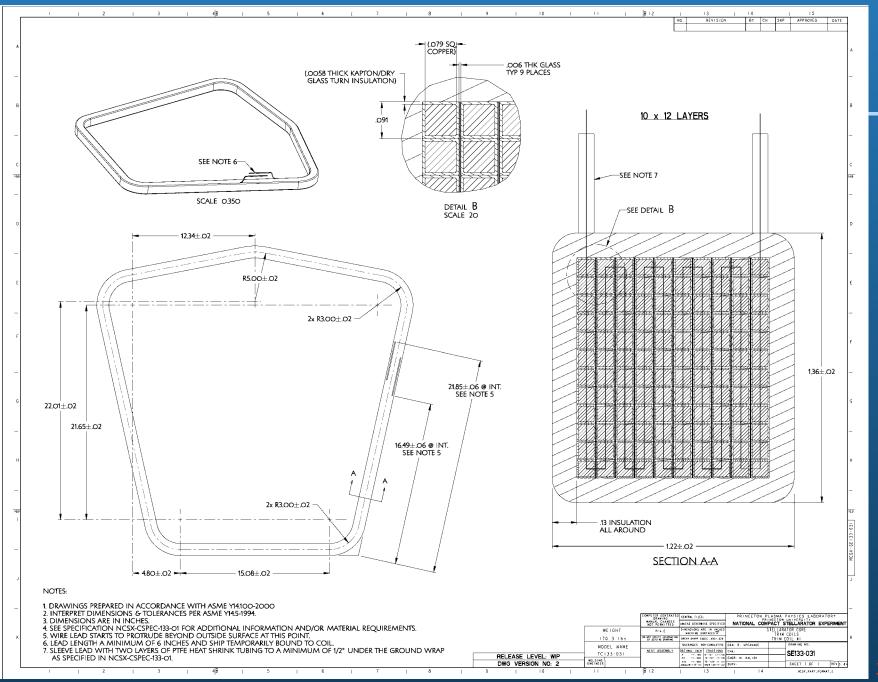
NCSX

- 48 Coils
- Only two coil types
- All Coils Planar
- Top bottom symmetric half period patterns

48 Coil Trim Coil Configuration Meets Design Design Point **Objective with Margin**

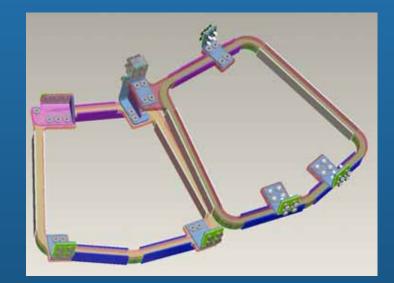

Using SV			ution	Using NLP Sc	olution
Total					
	Number	Total Island		Total Island	
Trim Coil Configuration	Coils	Size	Max Current	Size	Max Current
		%Total Flux	kA-T	%Total Flux	kA-T
Original 36 coils, 24 circuits	36	4.42	8.34	3.35	10.00
Original with 12 Midplane Coils	48	4.41	7.85	2.55	10.00
All Inner/Outer Coils Only (as Modified)	54	4.30	9.96	2.87	10.00
All Inner/Outer Coils Only (as Modified)	48	4.29	11.36		
(but without Outer AA)		6,95	10.00		
All Inner/Outer & Midplane Coils	66	4.26	9.21	2.17	10.00
All Inner/Outer & Midplane Coils	60	4.25	9.56	2.17	10.00
(but without Outer AA)	00	1.20	0.00		
All Inner/Outer Coils (port12 split)	60	4.47	10.00	2.89	10.00
(with Outer AA Coils)	00	4.21	10.30	2.05	10.00
All Inner/Outer Coils (port12 split)	54	7.98	10.00	3.00	10.00
	54			3.00	10.00
(without Outer AA Coils)		4.18	11.88		
All Inner/Outer Coile (nort12 on lit)	48	8.49	10.00	3.12	10.00
All Inner/Outer Coils (port12 split)	48		10.00	3.12	10.00
(without Outer AA and CC Coils)		4.06	12.25		
Above Dive Winge Distorted (40 mile				2.00	10.00
Above Plus Wings Distorted +40 mils		-	-	3.88	10.00
(Stellarator Symmetric) -40 mils			-	3.88	10.00
Above Plus Wings Distorted +40 mils		-	-	3.25	10.00
(1 HP Only, Non Stellarator Sym)					

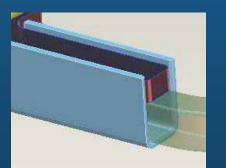
Trim Coil Requirements

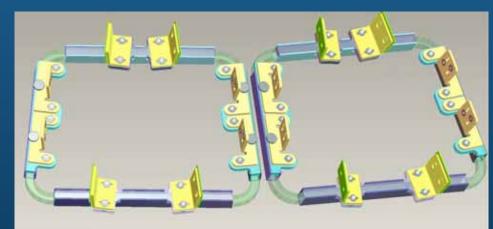

- Meet Requirements when subjected to GRD reference scenarios
- Island Suppression 10%
 - 20 kAmp Turns
 - 48 Coil Configuration
- Thermal Excursions and Stress within limits
 - 2 second pulse every 15 minutes
 - 167 amps
- Withstand Operating Voltages
 - Max Operating Voltage 1.0kV
 - Design Standoff Voltage to Ground of 6.7 kV
 - Design Standoff Voltage Turn to Turn of 1.0 kV
- Winding Tolerances
 - Installed tolerance +/-12mm
 - Fabrication tolerance +/- 6mm
 - Location measured to within 2mm

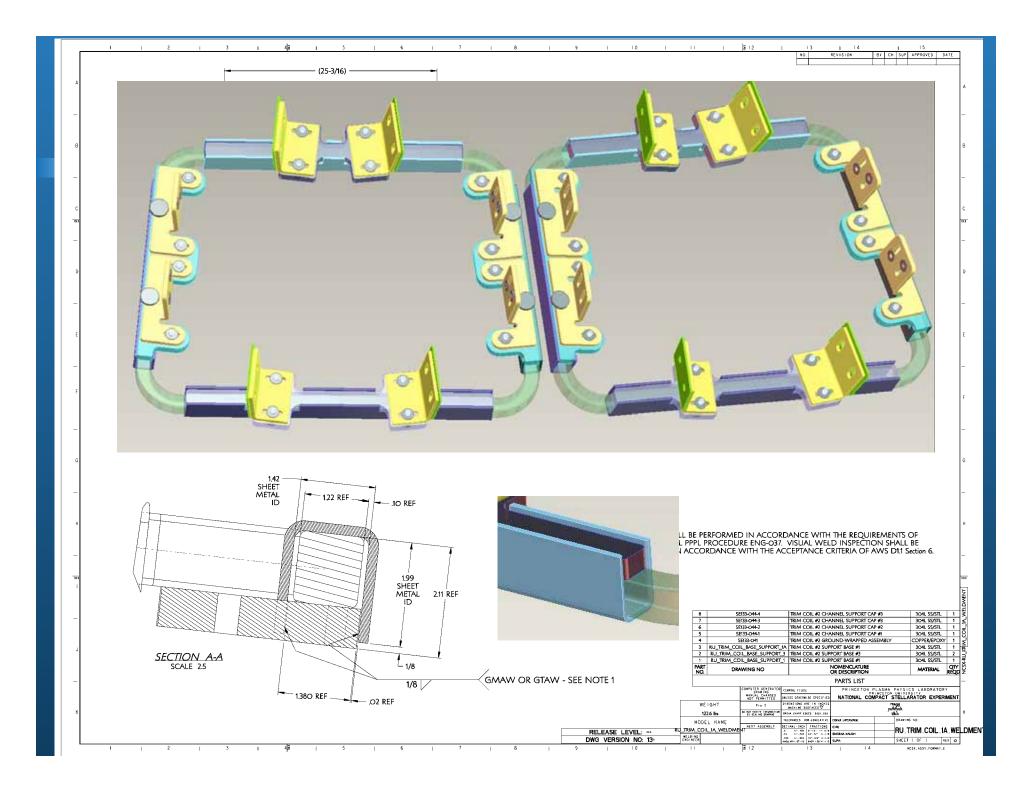
Winding Pack Insulation Scheme

- Kapton Tape applied directly to conductor to enhance turn to turn dielectric standoff
- One half lap layer of glass to allow for epoxy impregnation
- Additional .006" thk by 1" wide glass between layers to wick epoxy

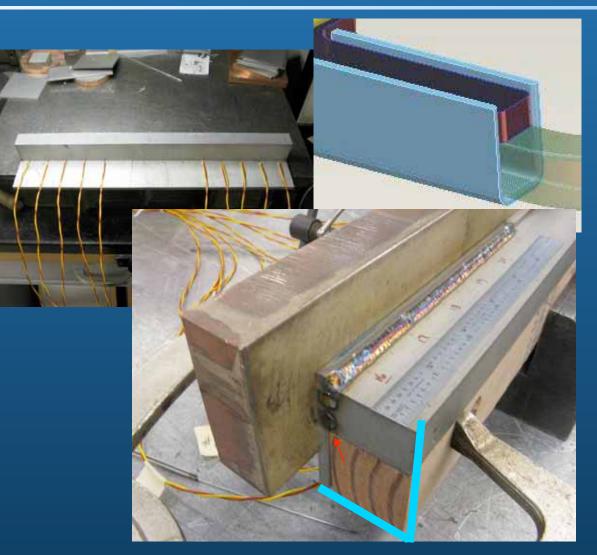

	Trim Ground Wrap					
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
7	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
Ŷ		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
7	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
	1/2 Lap Layer Dry Glass	Glass	0.006		0.54	
		Glass	0.006		0.54	
			0.12	Inches	10.8	KV
	Trim Turn to Turn					
	1/2 Lap Layer Dry Glass	Glass	0.0012		0,108	
		Glass	0.0012		0.108	
		Kapton	0.0017		7.7	
		Kapton	0.0017			
С			0.0058	Inches	7.9	KV



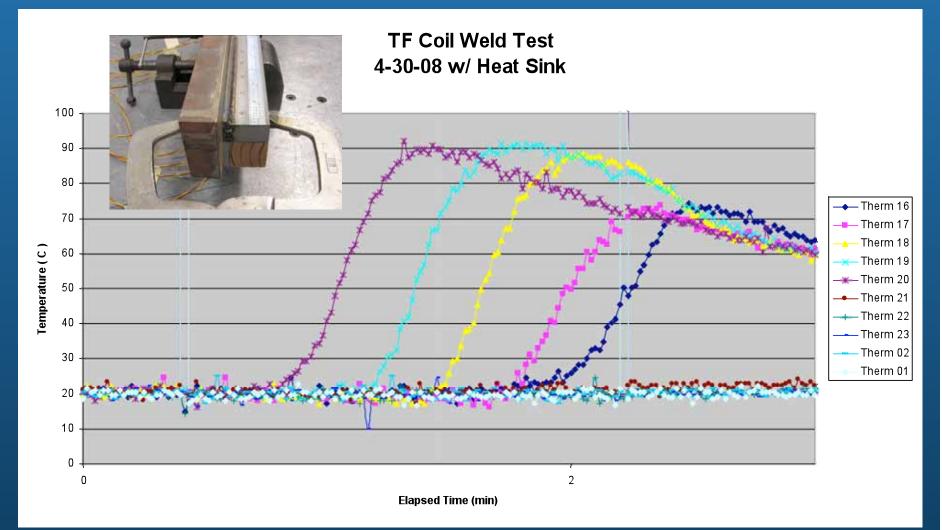

Structural Design


NCSX

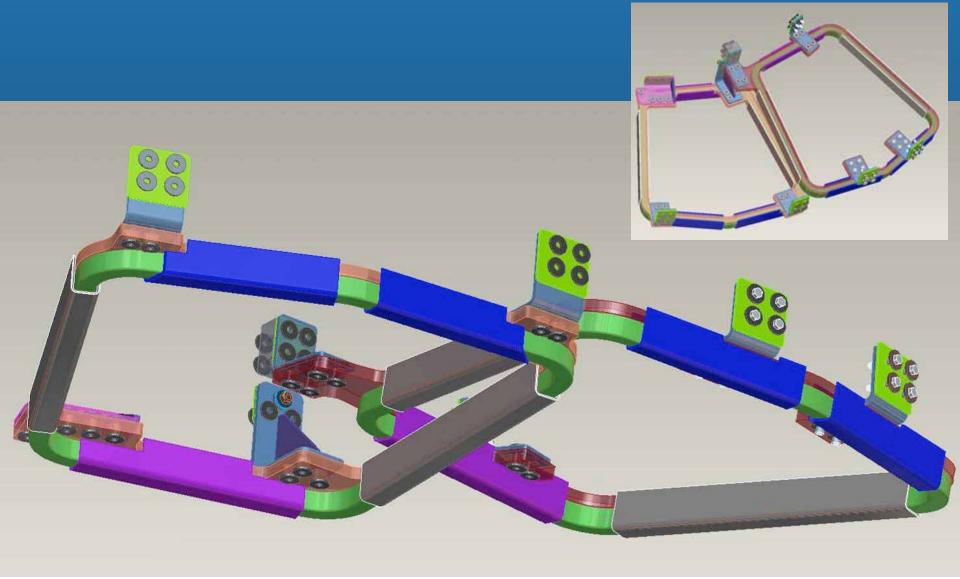
- Coil Assemblies assembled off line and then bolted to TF and PF Coils supports
- Brackets offer 3 degrees of adjustment
- Custom shimming may be required to correct for angle in one plane only
- With all frames accurately machined a representative aluminum template can be used to pre-fab shims if required



R&D Weld Testing Setup

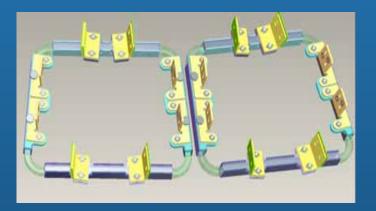

NCSX

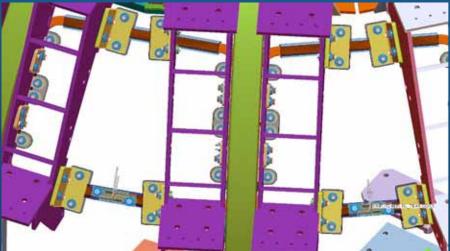
- Testing to assure U Channel welding did not exceed 120C at coil surface
- Wooden Block assembled to mockup of Coil Structure
- Ten thermocouples record temperature
- Method and results logged for assembly procedure

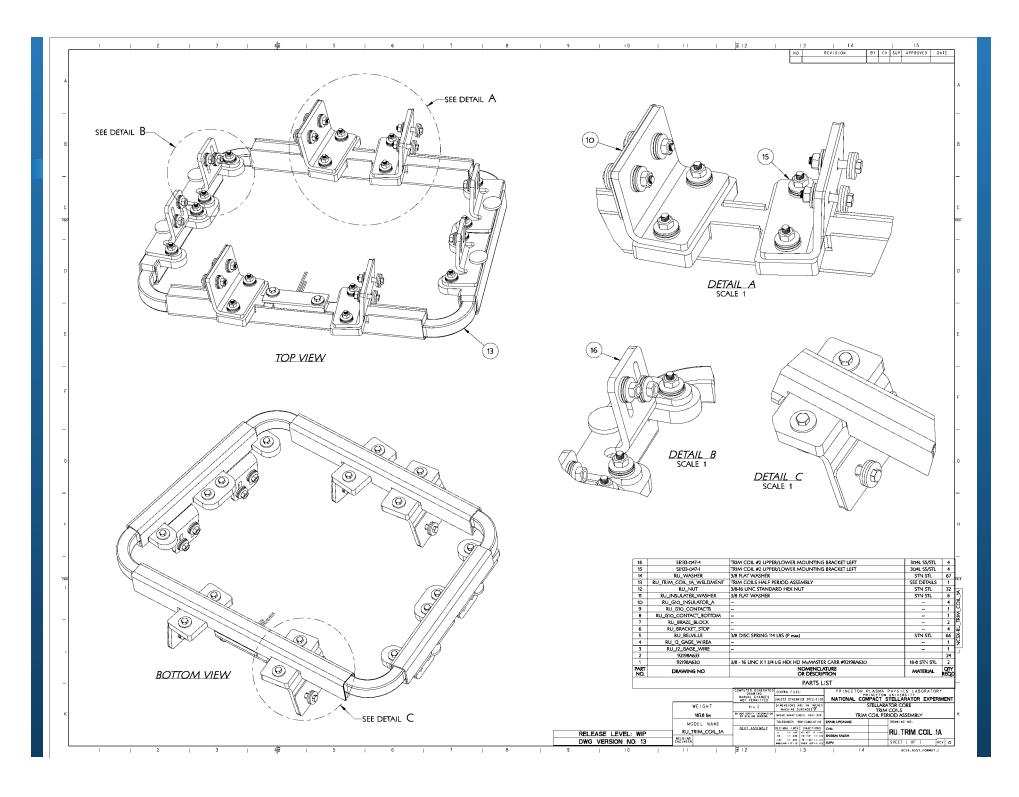

R&D Weld Testing- With Heat Sink

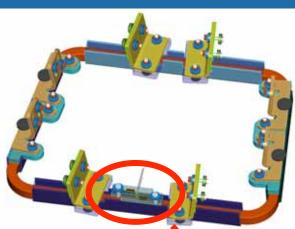
NCSX

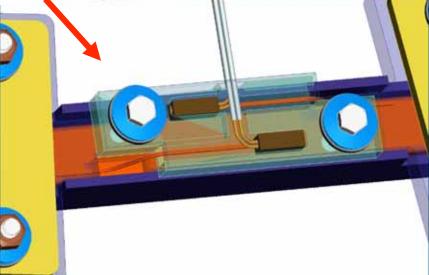

Structural Design Upper / Lower Coils




Structural Design - Installed

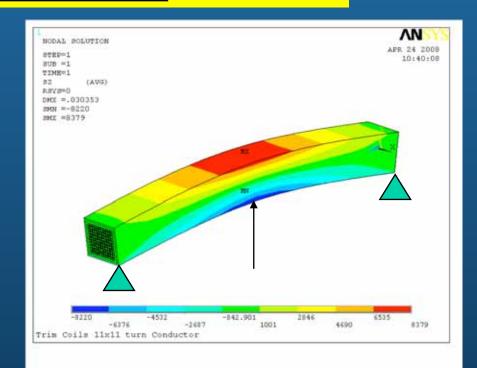





Coil Leads Supports

NCSX

- Leads protrude from a notch in the ³/₄ inch support plate
- Leads are sleeved with Teflon for improved dielectric standoff
- Leads and Trim Coil cables are brazed into a copper transition block
- G11 blocks strain relieve leads and cable transition

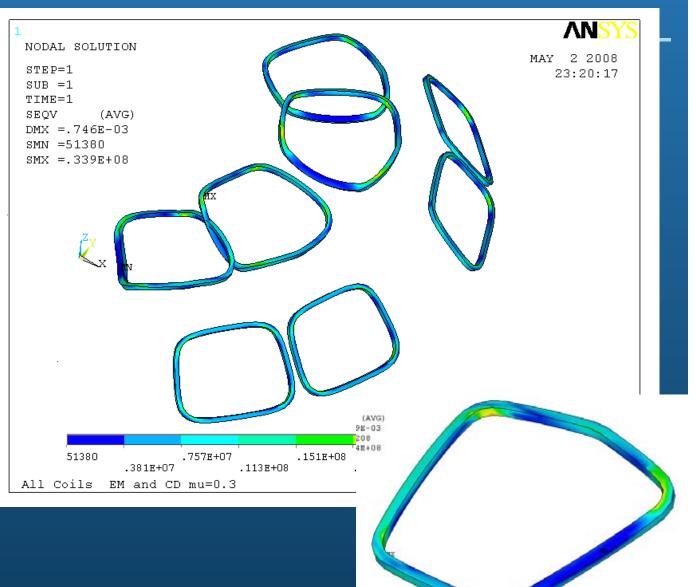

Conductor Modeled with Equivalent Properties calculated from Flexural Modulus Simulation

NCSX

	E, Mpsi Sz	z, p s i	E, Mpsi	Sz, psi	Sz/Sz	Sz/Sz_max
Cu Wire	17	18390	5.85	6620	2.78	2.19
Insulation	1.5	2111	5.85	8379	0.25	0.25

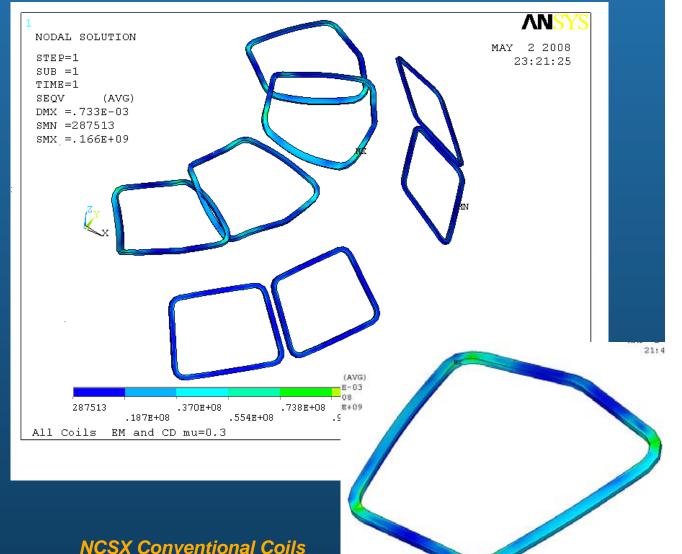
- Detailed Model of 120 Turn Coil
- Distinct Elements for Copper and Glass Insulation
- Equivalent properties used for large composite model
- Results from composite model scaled to determine maximum stresses

Load Cases Investigated for EM Forces


- All GRD Load Cases at Multiple (5) time points
- Additional Flexibility Cases
 Identified by Physics
 - lota Scan (2)
 - Shear Scan (2)
- Max Running Loads Found
 - 80 lb/in Inner Coils
 - 60 lb/in Outer Coils
- Subsequent analysis is run for the worst load case iota .19 case

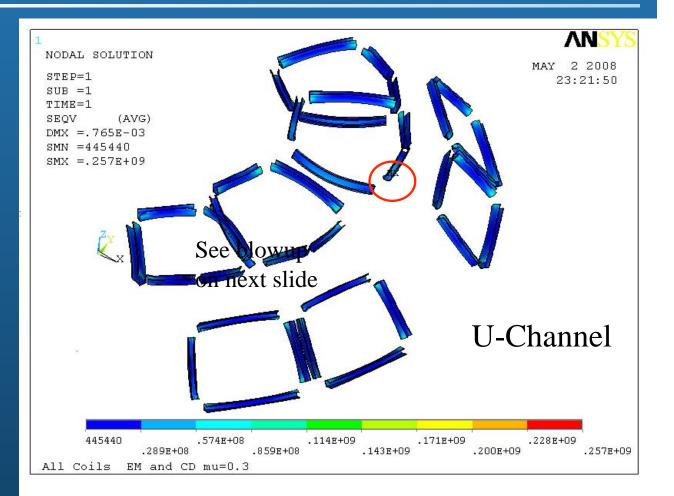
- 2T High Beta
- 1.7T High beta
- 1.2T Long Pulse
- 1.7T Ohmic
- 320KA Ohmic
- 0.5 T TF
- Iota/Shear Scan
 - iota -0.10
 - iota 0.19 (High TF Field)
 - iota +0.20
 - iota 0.65

Conductor Stress Result


NCSX

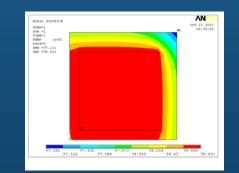
- EM only= 7.3Ksi
- EM only allowable= 1.5Sm=10.3ksi (at 77K for local bending)
- Cool Down only= 8ksi
- CD only allowable 3xSm=20.7ksi (for secondary thermal stress + primary)
- CD+EM= 10.7ksi
- Allowable 3xSm=20.7ksi (for secondary thermal stress + primary)

3/4" Support Plate Stress Result


- EM only= **11.3ksi**
- EM only allowable= Sm=20.0ksi (Primary Member Stress)
- Cool Down only= 16.7ksi
- Allowable 3xSm=60.0ksi (for secondary thermal stress + primary)
- CD+EM= 23.7ksi
- Allowable 3xSm=60.0ksi (for secondary thermal stress + primary)

U Channel Stress Result

NCSX


- EM only= **16.6** ksi
- Allowable= 1.5Sm=35.0ksi (Primary Member Stress)
- Cool Down only= 26.9ksi
- Allowable 3xSm=60.0ksi (for secondary thermal stress + primary)
- CD+EM= 36.7ksi
- Allowable 3xSm=60.0ksi (for secondary thermal stress + primary)
- Element Average Stress is only 30% of Max Stress Result 36.7ksi→10.9ksi

Coil Cooling Analysis

Comfortable Design Margins With Convection Cooling

- Requirement
 - 2 second pulse every 15 minutes
 - 20 Kamp Turns
 - Equivalent average power of 27 watts
- For 120 Turn Coil With 2mm Conductor (10X20)
 - Convection cooling adequate
 - Temperature increase per pulse is only approx.= 2.6 C
 - Equilibrium reached with temperature rise approx.= 9.0C
- Margin Available
 - Doubling the current to 40 amp turns
 - Equivalent Average Power of 107 watts
 - Temperature increase per pulse is only approx.= 10.3 C
 - Equilibrium reached with temp. rise approx.= 35C

