

NCSX Machine Assembly

E. D. Perry

SC Project Review of NCSX, April 8-10, 2008

- Requirements
 - Test Cell Preparation
 - Perform final installation / assembly of stellarator core using the Field Period Assemblies (FPAs) delivered from Station 5 and components from other WBS elements
 - Installation of power and other services from the boundary of the Test Cell up to the stellarator core
- Interfaces
 - Interfaces included in existing 3D CAD model ... includes input from:
 - All WBS elements which have items to install
 - Safety, operations and maintenance personnel
 - Details being adjusted in the model are just those for conventional services
 - Cable and piping runs now being cleaned up

Machine Assembly Plan

- Design status
 - Detailed assembly plan has been developed
 - Plan includes specific metrology steps to assure that tolerance goals are met
 - Machine Assembly will be performed with detailed procedures
 - Procedures will cover safety issues as specific steps
 - Installation of platforms to assure safe access to work
 - Use of safety watches
 - Rotating workers when repetitive motion or awkward position tasks are involved
 - Procedures will include specific metrology steps called out in assembly plan
 - Procedures will include repeating operations until tolerance goals are met

Procurements for Machine Assembly

- Procurement Status
 - Machine Assembly only includes procurements of routine off-the-shelf items
 - All complex or one of a kind procurements are done by other WBS elements prior to Machine Assembly

Cost and Schedule

- The cost and schedule estimates are based on the detailed assembly plan
 - The mitigation of credible risks is included in the estimates
 - Multiple fit-ups/iterations are included in the estimates
- All tooling will be tested before it is needed

Staffing

- For each task in the assembly plan:
 - Determined crew size based on prior experience performing a similar task
 - on the PDX, TFTR, NSTX and NCSX devices
 - related to assembly issues and plans form Wendelstein-7
 - on the Advanced Toroidal Facility (ATF) stellarator at ORNL
 - Determined number of shifts to complete
 - Determined the amount of support staff and supervision required for each task
 - Metrology crew requirements were specified for each task
 - Support from the engineers who designed and fabricated each component were specified for each task when this support is needed

Level of Detail in Estimates

NCSX WBS 7 Rebaseline			nges in rec	ł											Г
	Station 6 (Final Machine Assembly)														Г
								Man	hours						Г
	Assembly Step	Crew Size	Qty Shifts	2nd Shift possible	EM (engr supervision budgeted as LOE. Shown here for est basis only))	SM (tech supervision budgeted as LOE. Shown here for est basis only))	SB (design)	EM (cog engr sprt)	SM (technical oversite)	ТВ	EA EM (dimensional control/back office budgetd as LOE. Shown here for ref only)	Metrology	M&S	Pre-Req	r
Step															L
	totals =				2720	6958	990	996	498	31394	740	3348	524.3		┡
					man-hours	man-nours				man-nours	man-nours	man-nours	şĸ		ł
4.00	FPA-1 installation and assembly test	and the second										Galles and	Eddelf and	and hereits	t
4.01	Obtain a set of Period 1 alignment fiducial positions to use in locating the period.				1										
4.01a	Exercise assembly structure with FPA-1 before start of assembly		40	no	80	320			1	640		320		receive FPA-1	ſ
4.02	Move FPA 1 support fixture to the assembly position and lock in place. Prepare corner position adjustors located on the period platform to accept the period.	3	1		3	6				24				4.01a	
4.03	Using laser at Period 1 support pole, establish a global coordinate system based on monuments on the walls and on the FPA support fixture.	2	2	no							4	16		4.02	
4.04	Position Period 1 on the period support stand and engage the corner positioning device, retaining the load on the crane.	3	0.5		2	3				12				4.03	

Summary of Costs

		· 如此,我们们的问题。	LOE		NON-LOE				
RL M	JOB	BUDGET to COMPLETE (from May 1,2007)	\$	%	\$	%	ETC (bottoms-up) from 2/1/08	Bottoms up EAC (from May 1,2007)	increase
	Job: 8101 - Project Management &Control-REJ	3,843	4,160	100%	1999 - M	0%	4,160	4,646	803
Rej	Job: 8102 - NCSX MIE Management ORNL-HARRIS	499	654	100%		0%	654	821	322
u l	Job: 8998 - Allocations-STRYKOWSKY	1,453	1.928	100%		0%	1,928	2,300	847
	Total Don Rej	5,795	6,742	100%	-	0%	6,742	7,767	1,972
-	Job: 1204 - VV Sys Procurements (nonVVSA)-DUDEK	408			221	100%	220.6	462	54
	Job: 1250 - Vacuum Vessel Fabrication**CLOSED**	(252)					0	(252)	0
	Job: 1260 NB Transition Ducts- GORANSON		26	5%	541	95%	566.73	567	567
	Job: 1270 - Heater Control System-GORANSON			0%	642	100%	641.66	642	642
	Job: 1408 - MC Winding Supplies-CHRZANOWSKI	350	89	72%	34	28%	123.92	269	(81)
	Job: 1431 - Mod. Coil Interface Hardware-DUDEK	1,039	119	11%	955	89%	1074.03	1,545	506
	Job: 1451 - Mod Coil Winding-CHRZANOWSKI	2,867	355	39%	554	61%	909.14	2,604	(263)
	Job: 1459 - Mod Coil Fabr.Punch List-CHRZANOWSKI	501	32	11%	251	89%	282.75	710	209
	Job: 1802 - FP Assy Oversight&Support-VIOLA	1,989	3,845	100%	(19)	0%	3825.83	4,346	2,357
	Job: 1803/1805- FPA Tooling/Constr-BROWN/DUDEK	522		0%	994	100%	993.97	1,277	755
	Job:1810-Field Period Assy -Station 1 2 3 VIOLA	5,745	2,167	30%	5,176	70%	7343.14	8,605	2,860
	Job: 1815 - Field Period Assy Station 5	1,334		0%	1,888	100%	1888.31	1,888	554
ek	Job: 2101 - Fueling Systems-BLANCHARD	69	7	2%	332	98%	338.23	338	269
pnc	Job: 2201 - Vacuum Pumping Systems-BLANCHARD	172	21	3%	659	97%	679.36	679	507
1	Job: 3101 - Magnetic Diagnostics-STRATTON	291	94	23%	317	77%	411.26	553	262
La	Job: 3601 - Edge Divertor Diagnostics-STRATTON	31		0%	30	100%	30.12	30	(1)
	Job: 3801 - Electron Beam Mapping-STRATTON	263		0%	258	100%	258.06	258	(5)
	Job: 3901 - Diagnostics sys Integration-STRATTON	132	112	100%	(0)	0%	111.52	146	14
	Job: 6101 - Water Systems-DUDEK	46		0%	112	100%	112.25	112	66
	Job: 6201 - Cryogenic Syst-RAFTOPOLOUS	655	50	3%	1,518	97%	1567.72	1,568	913
	Job: 6301 - Utility Systems-DUDEK	105		0%	109	100%	109.44	109	4
	Job: 6401 - PFC/VV Htng/Cooling(bakeout)- KALISH	573		0%	634	100%	633:78	634	61
	Job: 7301 - Platform Design &	204		0%	213	100%	212.67	. 213	9
	Job: 7401 - TC Prep & Mach Assy Planning-PERRY	1,417	2,324	100%	(2)	0%	2322.89	2,068	651
	Job: 7501 - Construction Support Crew-PERRY	1,407	1,325	100%	(0)	0%	1325.21	1,325	(82)
	Job: 7503 - Machine Assembly (station 6)-PERRY	4,511	S. Carlos	0%	4,317	100%	4317.43	4,317	(194)
	Job: 7601 - Tooling Design & Fabrication-PERRY	412		0%	399	100%	398.69	399	(13)
	Total Larry Dudek	24,791	10,566	34%	20,132	66%	30,699	35,412	10,621

Machine Assembly Schedule

Forecast	Forecast	FY10	FY12
Start	Finish	ONDJFMAMJJASONDJFMAMJJAS	ONDJFMA
Job: 7503 - Machine Asser	mbly (station 6)-PERRY		
+1.0 - Component Preparation	on		
01DEC09	23JUL10		
+ 2.0 - Test Cell Metrology se	et-up/deflection test		
03DEC09	18MAR10		
+ 3.0 - Pre-installation set-up	and test	4	
11FEB10	18MAR10		
+4.0 - FPA-1 Installation and	Assembly Test	4	
19/04/210	22JUL10		
+ 5.0 - Spool piece installatio	in test	4	
2330110	16AUG10		
+ 6.0 - Spool piece flange ma		4	
2030110	02/00/10		
+7.0 - FPA-2 Installation	40 11 11 40	4	
1830/010	12JUL10		
+ 8.0 - FPA-3 Installation	0195010	4	
+9.0 - Measure Type C MC E			
02SEP10	09SEP10	4	
+10.0 - Type-C Shim Sizing/	Pren		
08SEP10	09SEP10	4	
+11.0 - Type-C Inboard Shim	Installation Check		
11.IUN10	280CT10		
+ 12.0 - Install Remaining TF	Coils		
29OCT10	04JAN11	1	
+ 13.0 - Install PF-4 Lwr & So	lenoid suprt column		
05JAN11	05JAN11	1	
+14.0 - Move all Periods to in	nstalled position		
06JAN11	21MAR11		
+ 15.0 - Move VV Period to fit	nal position and Weld		
29NOV10	01JUN11		
+ 16.0 - Move TF Coils to fina	al position		
01JUN11	09JUN11		
+ 17.0 - Install Lower PF Coli	5		
10JUN11	13JUN11		
+18.0 - Transfer Weight to Fi	inal Machine Supports		
14JUN11	30JUN11		
+ 19.0 - Vacuum Pump Syste	m		
01JUN11	20JUL11		
+ 20.0 - MC/VVSA Annulus in	sulation fill		
01JUL11	22JUL11		
+ 21.0 - Instl Remaining Trim	Coils & Mag struct	4	
21JUL11	01AUG11		
+ 22.0 - Install solenoid & Re	maining PF Coils	4	
0240G11	17AUG11		
+ 23.0 - Insti/Route Mag Lead	1425D11	4	
+24.0 Install LN2 and 180.0	INSEPT1		
+ 24.0 - Install LNZ and I&C S	2400711	4	
+ 25.0 thru 35.0 - Crystat NE	duct & I&C Pouting		
28.11.111 20.0 - Cryostat, NE		┩	
Labi 9501 Interroted Orest	Tanto Tanting CENTI E		
Job: 8501 - Integrated Syst	tems resting-GENTILE		
+ Start-up	05 100100	4	
1800111	05JAN12		

- Machine assembly will be performed with detailed procedures
 - Will be based on the detailed assembly plan
 - Will include specific metrology steps
 - Will assure that tolerance goals are met

Component preparations

Fig 1a) Period support stand

Fig 1b) Spool support stand

Fig 1c) FPA assembly cart

- Test cell metrology set-up
- Pre-installation set-up and test
 - All tooling will be tested before it is needed

Fig. 2a) Machine base support structure

Fig. 2b) FPA assembly carts installed

- Temporary assembly structure used for increased positioning accuracy
 - Involves assembling field periods on one set of structures that have radial motion capability and then transferring to permanent supports
 - Positioning will be within 0.030"
 - Multiple fit-ups/iterations are included in the costs and schedules

Fig. 2c) Lower coils positioned within the cart rail groves.

Fig. 2d) FPA cart moved to retracted position.

Fig. 3a) Laser support base and pole installed.

- Risk: Assembly sled not stiff enough or does not have repeatable motion
- Mitigation: Sled will be designed with adequate stiffness and then evaluated with concrete blocks in plenty of time to make design modifications
 - Cost and schedule for this mitigation is in the base plan

- Metrology/assembly testing of each assembly sled with a dummy load
 - Metrology is 1/3 of the total field work, as has been the experience on coil winding and vacuum vessel assembly
- Then testing each FPA on it's sled prior to final assembly
 - Per experience of Wendelstein 7-X

 Field Period Assembly (FPA) installation and assembly test

- Risk: Field Period Assembly (FPA) alignment not within tolerances
- Testing: Metrology check of position
- Mitigation: Use assembly carts to reposition FPA
 - Cost and schedule for this mitigation is in the base plan

Spool piece installation test

Fig. 5a) Period 1 retracted with spool and support stand installed

Fig. 5b) Period 1 and spool shown at installed position

- Risk: Vacuum vessel sectors not in perfect position
- Testing: Measure gap between sectors
- Mitigation: Final machining of vessel spool piece after actual gap is measured
 - Cost and schedule for this mitigation is in the base plan

• FPA-2 installation

Fig. 6a) Type-C flange measurement

Risks and Risk Mitigation

- Risk: Space between modular coils on adjacent FPAs not perfect
- Testing: Metrology to determine actual gap between Type C coils
- Mitigation: Custom shims
 - Cost and schedule for this mitigation is in the base plan

- FPA-3 installation
- Measure remaining Type-C modular coil flanges
- Type-C inboard shim installation check
 Very limited space platform needed for technician

• Type-C inboard shim check / installation

- Temporarily attach a set of outboard shims (top/bottom) and all inboard shims on one Type-C flange of each of the three FPAs
- Move all FPAs to their installed position
- Install studs and supernuts at the shimmed locations; torque to 50% of final value
- Do a hand "wiggle" test for all shims to make sure they are tight
 - If a loose shim is found, back off on sufficient adjacent bolts to allow a replacement shim to be inserted – tighten bolts and repeat

- Type-C inboard shim check / installation cont
 - Measure a minimum of eight tooling balls on each FPA
 - The maximum deviation should be 0.020" or less
 - If deviation exceeds 0.020", "back office" input is needed on which new shims should be used
 - Loosen hardware, install new shims and repeat
 - With successful metrology measurements, remove all hardware and return each FPA to its retracted position
 - Permanently secure in place all inboard shims. Retain in place all initial alignment outboard shims

• Install remaining TF coils

- Position lower PF4 coil and solenoid support
- Move all FPAs to installed position
- Install outboard C-C shims and remaining studs, bushings and supernuts
- Move each vacuum vessel section to its final position and secure

- Position each vacuum vessel spool piece
 Lock in place with clips to vacuum vessel
- Weld all spool pieces to vacuum vessel
 Weld inspections and leak checks on second shift
- Weld on port 4s

- Move TF coils to wedged position
- Install lower PF coils

• Transfer weight to final machine support structure

Risks and Risk Mitigation

- Risk: FPA position shifts when load is transferred to permanent supports
- Testing: Metrology determines shift
- Mitigation: Transfer load back to temporary carts, re-set permanent supports to compensate, and repeat
 - Cost and schedule for this mitigation is in the base plan

- Install vacuum pumping system on period #1
- Pumpdown and leak check vacuum vessel
- Insulation fill in annulus between modular coils and vacuum vessel
- Install remaining trim coils and magnet structures
- Install center solenoid and remaining PF coils
- Install and route all magnet leads to temperature transition box

- Install LN2 distribution system
- Install I&C cables to stellarator core
 - Includes general use cable tray installation
- Install the cryostat
- Connect bakeout system
- Install remaining test cell platforms

3 D Model of Test Cell

- Tolerance Goals can be achieved
 - Procedures and tooling, including metrology, are being designed to be consistent with tolerance requirements of within 0.030"
 - Procedures and tooling have been developed for Field Period Assembly which can be carried over to Final Assembly tasks

- Final machine assembly planning is consistent with requirements
 - Assembly access for C-C inboard bolted joint has been studied using CAD modeling and a physical mockup
 - Mitigation measures are being budgeted, planned and implemented for risks that are still outstanding

Summary

- The level of detail for the Machine Assembly has increased significantly in the last 18 months
 - Assembly Sequence Plan was developed
 - Task by task estimates were made
 - Assembly risks were identified
 - Mitigation of the risks were developed and incorporated into the base plan
- Although designs affecting the assembly are at a conceptual level in some cases, conservative estimates which allow for multiple fit-ups, along with experience from the assembly of other devices* as well as the metrology experience gained from the Field Period Assembly, will assure the assembly of NCSX within the tolerance requirements

* (PDX, TFTR, NSTX, NCSX so far, ATF and W-7)

