Status of Trim Coil Design

- Topology Scan Helical Post , Sawtooth, Wavy Modular Coils and Saddles
 - Perceived as truncated helical windings
 - How large do they need to be?
 - Generate series of windings of varying height centered on inboard mid-plane and compare coupling matrices
- Window Pane (alias Picture Frame) Coils
 - Where are they most effective?
 - To answer, cover a winding surface with small window pane coils (effectively dipoles) and calculate coupling matrix
 - Use 1826 surface for now until better surface(s) defined by engineering

Li383 Resonances For PVR, focus is on [5,3] and [6,3]

Li383 Fixed Boundary

AWB 010801

Helical Post for m=5

Shown for 3 Periods

360 deg Helical Post Equivalent to Helical Winding and Wavy PF at u=0.

Wavy Modular for m=5

Shown for 3 Periods

360 deg Wavy Modular Equivalent to Helical Winding and Planar Mod at v=0.5

360 deg Saddles Equivalent to Helical Winding and Planar Mod at v=0.0 & 0.5

Impact of Extent on Coupling

1) |ds^2| = 1.e-7 corresponds to 1 kA to control a 1% flux island
2) Coil extent given in u-v space. Real space comparison may differ₇

AWB 010801

24 x 24 'Dipole' Array with Unit Currents

li383 Dipole Coils

Finer Mesh with full coverage on 1826 surface

Still finer mesh requires code modifications not yet complete

24 x24 Dipole Array Coupling Matrix

Coupling Matrix m5

Coupling Matrix m6

Dipoles Uniform in u-v, Not Real Space

Real Space Area Distribution for uniform du*dv

Adjusting for Area, Dipoles want to be inboard at bean section

Coupling Matrix m5

Coupling Matrix m6

AWB 010801

11

Coupling Strength Appears Driven by Local Distance to Resonance Surface distm6

distm5 20010111 111957.098

20010111 123034 682

12

Grouping Of Like Sign Dipoles Reveals Helical Winding with some Modulation

M = 5 Helical Winding

M = 6 Helical Winding

AWB 010801 Contours of dipole currents shows same pattern

Should be able to Realize ~50% of Coupling for only ~20% of coverage

AWB 010801

24x24 Dipole Array Currents for Assumed Island Sizes

All Dipoles Retained

Target (ds^2)	I_max, KA	I_min, KA	Sum(I**2)
m5 = .0025 only	1.9	-1.9	9.71E+07
m5 = .0025, m6 = 0.	1.9	-1.9	9.87E+07
m6=.0025 only	18.6	-14.4	2.74E+09
m 6=.0025, m 5=0.	17.8	-13.9	2.78E+09

 $ds^2 = .0025$ is a 5% flux island

Bn on boundary not targeted (or evaluated - TBD)

24x24 Dipole Array Currents for Assumed Island Sizes

Dipoles eliminated at [-.125 < u < +.125], [-.250 < v < +.250] For NB access

Target (ds^2)	I_max, KA	I_min, KA	Sum(I**2)
m5 = .0025 only	3.0	-2.8	1.86E+08
m5=.0025, m6=0.	3.8	-4.5	2.11E+08
m6=.0025 only	37.7	-33.2	6.98E+09
m6=.0025, m5=0.	41.1	-37.6	9.25E+09

 $ds^2 = .0025$ is a 5% flux island

Bn on boundary not targeted (or evaluated - TBD)

24x24 Dipole Array Currents for Assumed Island Sizes

Dipoles eliminated at [-.125 < u < +.125], [-.250 < v < +.250]for NB access plus all inboard dipoles [.25 < u < .75]

Target (ds ^2)	I_max, KA	I_min, KA	Sum(I**2)
m5 = .0025 only	4.8	-5.3	3.75E+08
m5=.0025, m6=0.	5.3	-4.8	3.92E+08
m6=.0025 only	72.2	-92.7	4.84E+10
m 6=.0025, m 5=0.	69.4	-80.5	4.98E+10

 $ds^2 = .0025$ is a 5% flux island

Bn on boundary not targeted (or evaluated - TBD)

Further Plans

- Resolve difficulties representing winding surface received from engineering
- Pursue alternate locations proposed (ie inside VV)
- Identify additional block-out regions on winding surface dictated by machine access needs
- Discretize dipoles into larger Window Panes (or other topology) based on results
 - Verify ability to target multiple resonances is retained with (hopefully) a single layer of coils
 - Complete code modifications required to refine dipole mesh (needed to provide smoother solution)
- Demonstrate effectiveness of resultant coil set by running thru PIES

Summary

- Topology scan did not reveal any strong preference when targeting individual m=5 mode
- Dipole investigation has so far shown:
 - Most effective regions are those closest to resonance which for li383 occurs at v=0 section inboard and outboard (neither of which is very accessible)
 - By excluding those regions, current demands increase significantly (~3-5 x)
 - Whether this is acceptable depends on target requirements (ds² TBD) and final surface location