NCSX stay out zone update

P. Goranson, B. Nelson

NCSX Engr Meeting July 18, 2001

PFC design concept

Poloidal ribs

- Staged implementation planned
 - Initial coverage with low Z tiles mounted on poloidal ribs to form array of poloidal limiters
 - Panels for NB armor will also be provided
- Full coverage provided by mounting molded carbon fiber composite (CFC) panels on poloidal ribs
 - Panel size based on advice from BFG aerospace (~ 60 cm square, 1 cm thick)
- Ribs are separately cooled / heated with He gas for bakeout (350C) and normal operation
- Ribs are registered toroidally to VV but allowed to grow radially and vertically

CFC panels mounted on poloidal ribs

PFC issues

Requirements	Design	Fab.	Ass'y
 PFC stayout zone NBI armor location divertor parameters Limiter geometry In-vessel diagnostics (e.g., magnetic loops) 	 pumped divertor envelope transition from day 1 to full coverage RF launcher integration with limiters, diag. trim coil integration low z rail covers inboard limiter concept 	 CFC cost Low z coating 	 personnel access for installation reconfiguration

Reference geometry must be defined

"Stay out zone"

- Art Grossman has field line data for MGRID_Li383_1017C2
- Initial data has been scaled by 0.82
- Initial task has been to plot field lines in 3-D space using Pro-E for visualization
- Art today sent new data for 1.4 m case
- Issues include:
 - Where do we start the field lines? (if we start on last closed surface, they stay nicely on the surface)
 - How do we account for "flexibility" in the envelope?

Field line starting at OB midplane

Field lines started outside LCMS

 Plotted for 0, 0.2, 0.4, 1.8, and 3.8 cm offsets from OB midplane

What about vessel boundary?

Section with respect to PVR VV

Section with respect to TB VV

PVR vs TB VV at bean section

PVR vs TB VV at bullet section

60 field lines from 1.4m run (Art G)

R(m)

13

coils.li383_1.4m_1017a2 input.66m

30 lines, +/- 5 cm from LCMS OB

R(m)

VV / PFC deliverables

milestone		deliverable		who	when
5	update concept of VV/PFCs	5a	Define "stay-out" surface for PFCs (scrape- off layer using VMEC that includes expansion of divertor region, outboard region?)	P. Miodu- szewski	23-Jul-01
		5b	Define day 1 limiter requirements	P. Mio.	Draft 6/1
		5c	Define day 1 divertor baffle requirements	P. Mio.	Draft 6/1
		5d	Define inboard RF launcher envelope	Cole/ Majeski	Draft 6/12
		5e	Define VV assembly joint envelope and seal concept	Cole/ Goranson	
		5f	Define day 1 rail "covers" / limiters concept	Goranson	
		5g	Define trim coil attachment/alignment concept	Brown/ Cole	
		5h	Issue models and drawings of VV/PFC concept	Cole	