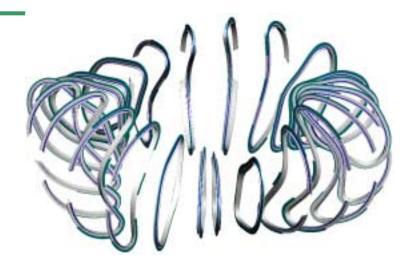
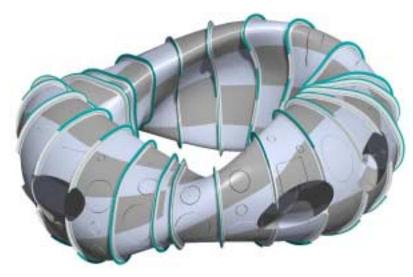
# NCSX VV / PFC update

P. Goranson, B. Nelson

NCSX Engr Meeting June 27, 2001


## PFC requirements - PVR

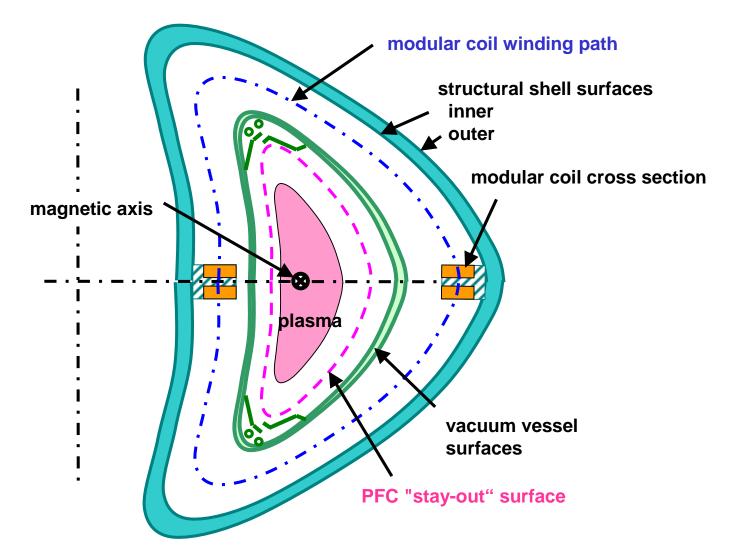
- Basic requirements
  - Carbon based, bakeable to 350C
  - NBI armor, limiters needed day 1 (at minimum)
  - 3 MW for 0.5 s
  - 2 cm from plasma inboard, 10 cm outboard (TBR, working to maximize plasma-wall separation)
  - Provide penetrations, accommodate in-vessel diagnostics mounted on VV
- Upgrade requirements
  - Full coverage of surfaces with carbon
  - 12 MW for 1.2 s
  - Provision for divertor


## PFC design concept

Poloidal ribs

- Staged implementation planned
  - Initial coverage with low Z tiles mounted on poloidal ribs to form array of poloidal limiters
  - Panels for NB armor will also be provided
- Full coverage provided by mounting molded carbon fiber composite (CFC) panels on poloidal ribs
  - Panel size based on advice from BFG aerospace (~ 60 cm square, 1 cm thick)
- Ribs are separately cooled / heated with He gas for bakeout (350C) and normal operation
- Ribs are registered toroidally to VV but allowed to grow radially and vertically




CFC panels mounted on poloidal ribs



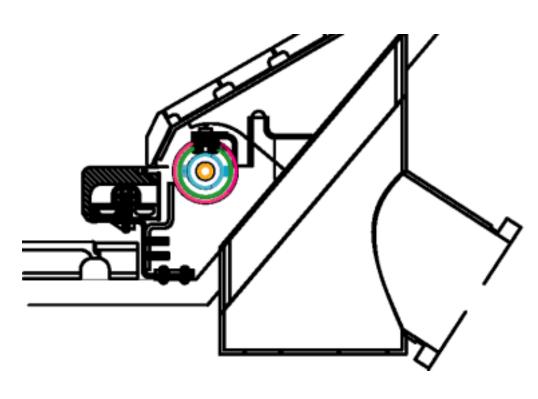
### PFC issues

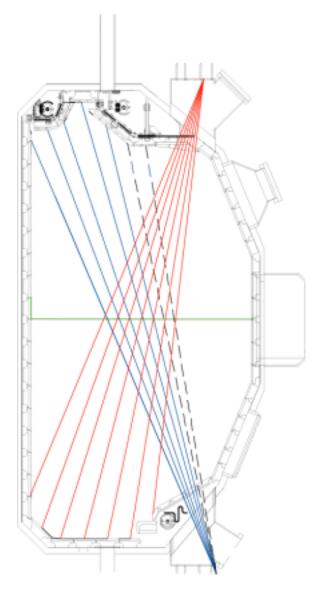
| Requirements                                                                                                                                                                                  | Design                                                                                                                                                                                                                                                                    | Fab.                                                | Ass'y                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| <ul> <li>PFC stayout zone</li> <li>NBI armor<br/>location</li> <li>divertor<br/>parameters</li> <li>Limiter geometry</li> <li>In-vessel<br/>diagnostics (e.g.,<br/>magnetic loops)</li> </ul> | <ul> <li>pumped divertor<br/>envelope</li> <li>transition from<br/>day 1 to full<br/>coverage</li> <li>RF launcher<br/>integration with<br/>limiters, diag.</li> <li>trim coil<br/>integration</li> <li>low z rail covers</li> <li>inboard limiter<br/>concept</li> </ul> | <ul> <li>CFC cost</li> <li>Low z coating</li> </ul> | <ul> <li>personnel<br/>access for         <ul> <li>installation</li> <li>reconfiguration</li> </ul> </li> </ul> |

#### Reference geometry must be defined



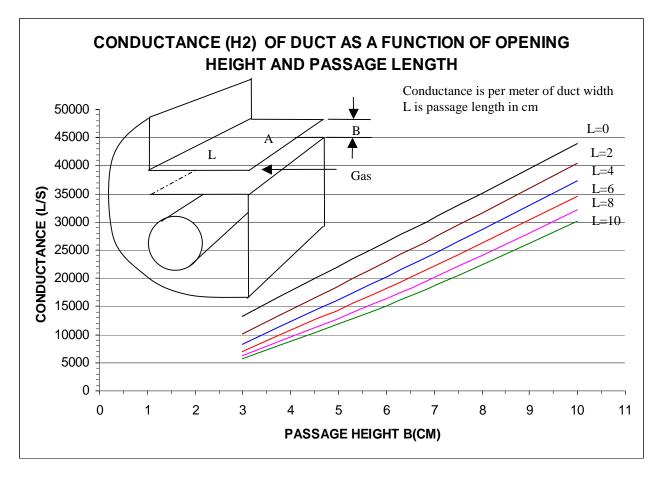
#### "Stay out zone"


- Art Grossman has field line data for MGRID\_Li383\_1017C2
- No data for 1.4 m geometry, but existing data will be scaled
- Initial task will be to plot field lines in 3-D space using Pro-E, then construct surface
- Issues include:
  - Is scaling ok?
  - How do we account for "flexibility" in the envelope?

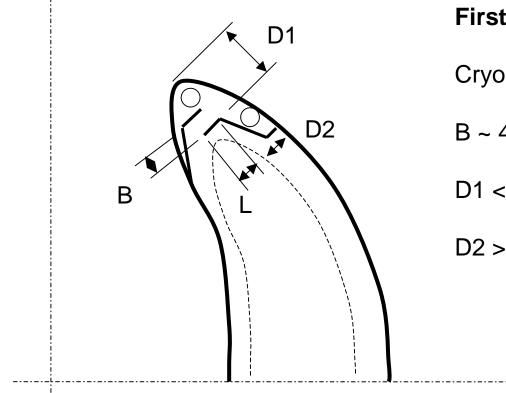

## Limiter and divertor parameters

- Limiter (day one)
  - 3 inboard limiters, one at each bullet section
  - 3 MW total load
  - Nominally 20 cm wide by 20 cm high
- Divertor
  - 6 divertor assemblies, 3 top 3 bottom along ridge of plasma
  - Need 5000 I/s pumping at each location, will calculate slot dimensions, cryopump geometry to determine envelope

#### Divertor envelope


- DIIID cryopump assumed for ref. Design
  - 3 toroidally cont. pumps, 90 to 140 inches dia.
  - 30,000 50,000 l/s each (5000 l/s per m length)
  - 4 inches minor dia.






## Divertor envelope (2)

• Slot conductance dictates baffle geometry



## Divertor envelope (3)



#### **First Guesses:**

Cryopump dia. ~ 10 cm

B ~ 4 cm for 5000 l/s net

D1 < 20 cm

D2 > 15 cm

## Vacuum vessel issues

| Requirements                                                                                                                                                                                             | Design                                                                                                                                                                                                                                                                     | Fab.                                                                                                                                                                                                                         | Ass'y                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>RF launcher<br/>envelope</li> <li>PFC / divertor<br/>envelope</li> <li>Diagnostic views,<br/>incl. symmetry<br/>plane access</li> <li>Plasma current for<br/>disruption<br/>analysis</li> </ul> | <ul> <li>smoother shape</li> <li>port integration<br/>for diagnostics</li> <li>segmentation</li> <li>field joint flange<br/>envelope</li> <li>stresses /<br/>buckling for<br/>disruption loads</li> <li>mechanics of<br/>describing vessel<br/>shape to vendors</li> </ul> | <ul> <li>Cost within<br/>est.?</li> <li>Process<br/>and<br/>qualified<br/>vendors</li> <li>Geometric<br/>tolerance</li> <li>draft spec.<br/>for procure-<br/>ment (who<br/>does final<br/>assy of port<br/>stubs)</li> </ul> | <ul> <li>sliding coils<br/>over vessel</li> <li>distortion<br/>during and<br/>after port<br/>welding</li> <li>personnel<br/>access for<br/>field joint</li> <li>Leak<br/>checking</li> </ul> |

## VV / PFC deliverables

| milestone |         | deliverable |                                                                                                                                         | who                  | when       |
|-----------|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|
| 5         | vV/PFCs | 5a          | Define "stay-out" surface for PFCs (scrape-<br>off layer using VMEC that includes<br>expansion of divertor region, outboard<br>region?) | P. Miodu-<br>szewski | 23-Jul-01  |
|           |         | 5b          | Define day 1 limiter requirements                                                                                                       | P. Mio.              | Draft 6/1  |
|           |         | 5c          | Define day 1 divertor baffle requirements                                                                                               | P. Mio.              | Draft 6/1  |
|           |         | 5d          | Define inboard RF launcher envelope                                                                                                     | Cole/<br>Majeski     | Draft 6/12 |
|           |         | 5e          | Define VV assembly joint envelope and seal concept                                                                                      | Cole/<br>Goranson    |            |
|           |         | 5f          | Define day 1 rail "covers" / limiters concept                                                                                           | Goranson             |            |
|           |         | 5g          | Define trim coil attachment/alignment concept                                                                                           | Brown/<br>Cole       |            |
|           |         | 5h          | Issue models and drawings of VV/PFC concept                                                                                             | Cole                 |            |



- Progress made toward defining day one inboard limiter and divertor requirements
- Progress made toward defining "stay out" zone for 1017 coil set
- Still need graceful upgrade path from day one PFC system (limiter/nbi armor) to ultimate PFC system (divertor/full tile coverage)