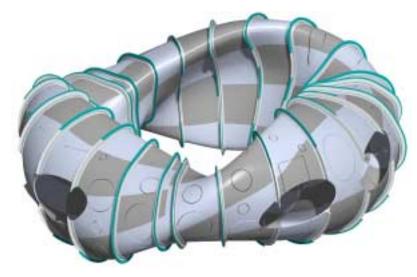
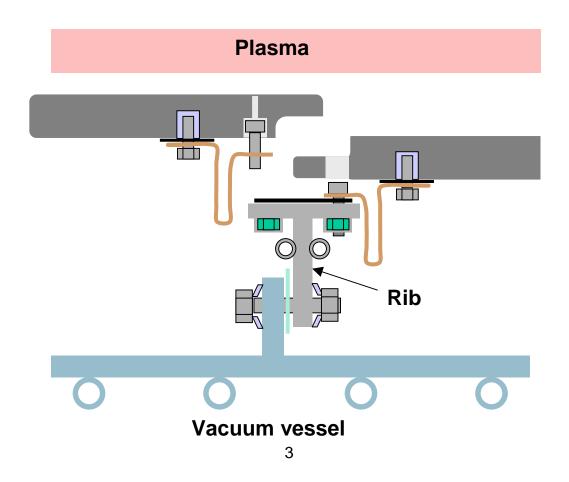

PFC requirements

- Basic requirements
 - Carbon based, bakeable to 350C
 - Provisions for:
 - NBI armor
 - Trim coil armor
 - Inboard limiter / coverage
 - Divertor baffles and plates
 - Divertor "pumping"
 - Energetic ion loss armor
 - Make first plasma, field line mapping, ohmic operation
 - 0.2 MW for 0.3 s
 - > 60 % of power to divertor region, balance can be intercepted by walls
 - Provide penetrations, accommodate in-vessel diagnostics mounted on VV
- Upgrade requirements
 - Geometric tolerance of FW surface TBD, should be tune-able
 - Capable to bias the individual panels electrically 1kV
 - Full coverage of surfaces with carbon
 - 12 MW for 1.2 s

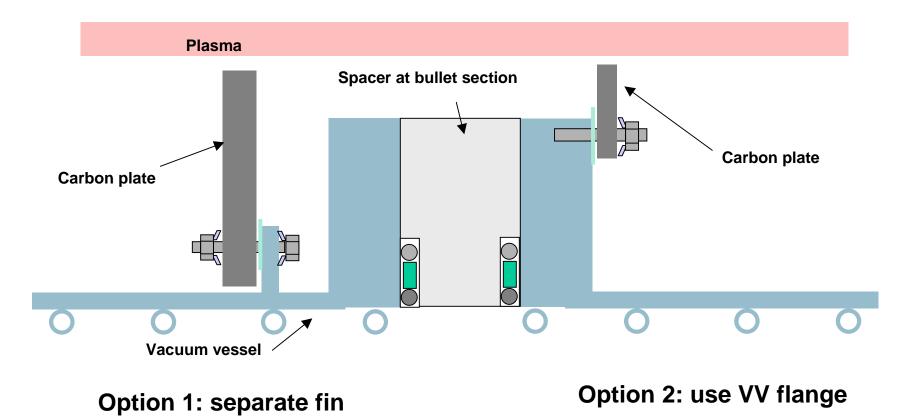

PFC design concept

Poloidal ribs

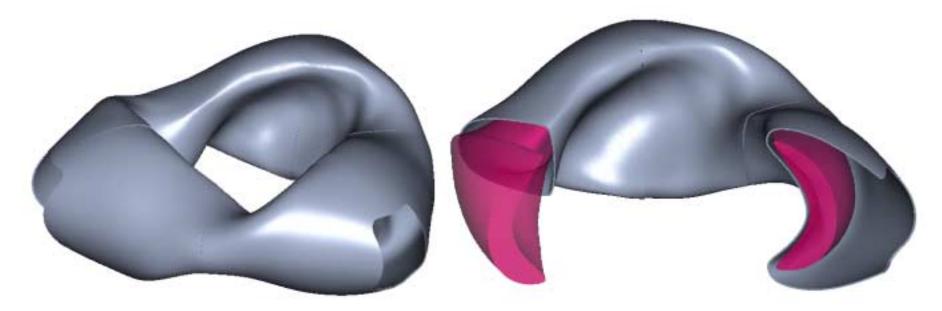
- Staged implementation planned
 - Initial coverage with low Z tiles mounted on poloidal ribs to form array of poloidal limiters
 - Panels for NB armor and divertor region will also be provided after NBI installed
- Full coverage provided by mounting molded carbon fiber composite (CFC) panels on poloidal ribs
 - Panel size based on advice from BFG aerospace (~ 60 cm square, 1 cm thick)
- Ribs are separately cooled / heated with He gas for bakeout (350C) and normal operation
- Ribs are registered toroidally to VV but allowed to grow radially and vertically



CFC panels mounted on poloidal ribs

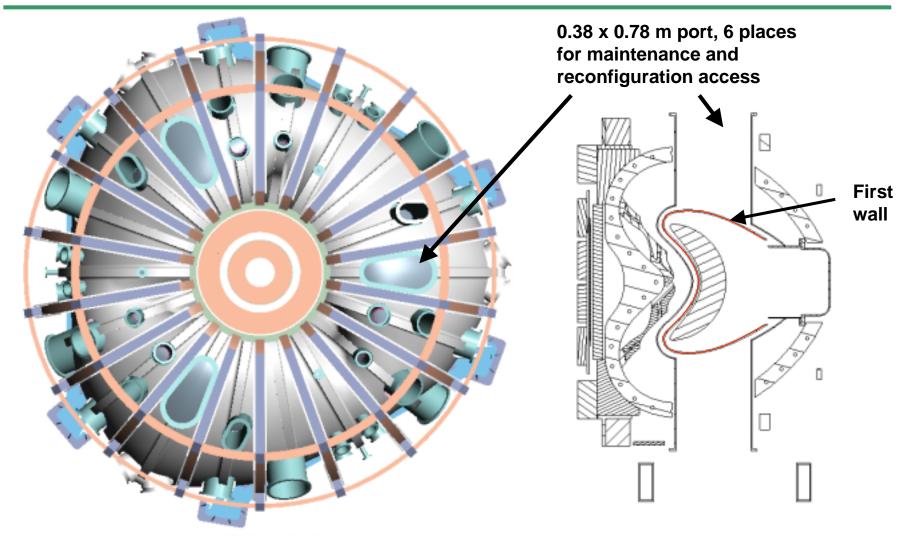

PFC panel / rib detail

 Details for one concept for panel attachment developed with BFG Aerospace


PFC simple limiter detail

 Details for flat carbon plates at either side of bullet shaped section (vessel field joint)

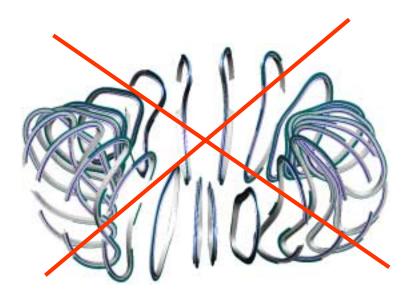
PFC envelope maximized inside vessel

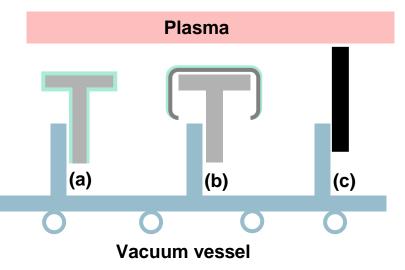

- PFC envelope is pushed out to vessel wall to provide maximum plasma shape flexibility
- Divertor envelope is still evolving, but baffles for neutral particle control must be accommodated

PFC envelope

PFC envelope with plasma

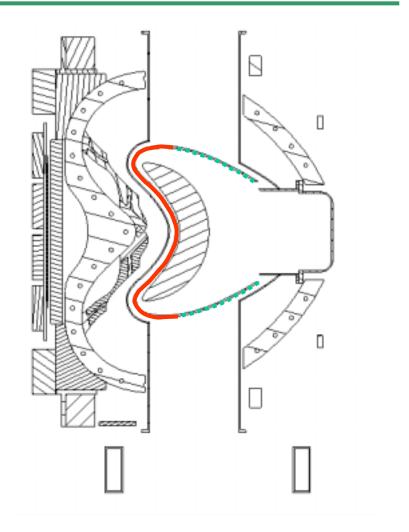
New coil set has improved access for maintenance and re-configuration

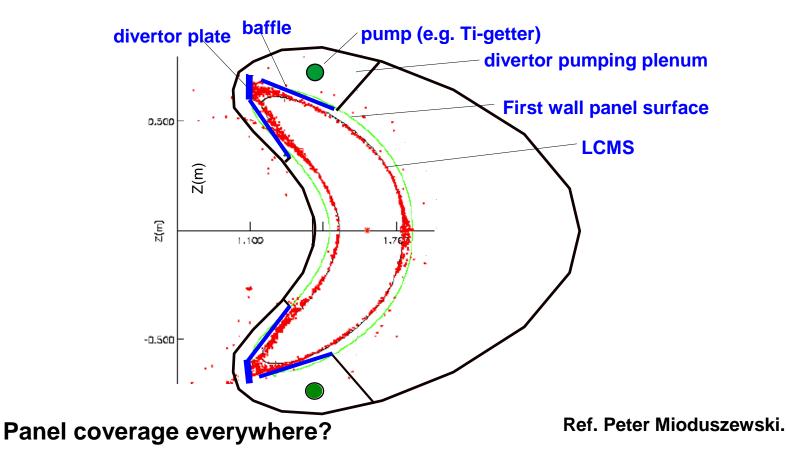



PFC issues

Requirements	Design	Fab.	Ass'y
 PFC stayout zone divertor geometry In-vessel diagnostics (e.g., magnetic loops) Max plasma current Divertor pumping upgrade 	 transition from day 1 to full coverage RF launcher integration with limiters, diag. trim coil integration low z rail cover configuration 	 CFC cost Low z coatings 	 personnel access for -installation -reconfiguration

PFC implementation: Stage 1


- NO Rib structure with cooling/heating lines
- Ribs protected with low Z coating by:
 - a) B4C spray coating
 - b) Sheet metal covers with B4C coating
 - c) Carbon (e.g. Poco, ATJ) tiles mounted directly to VV
- Carbon limiters are installed only at v=1/2 (bullet) cross section, but are semi-continuous poloidally


PFC implementation: Stage 2

- Rib structure with cooling/heating lines
- Panel coverage from upper divertor to lower divertor on inboard side
- Panel coverage for NBI armor on outboard side
- Exposed ribs protected with low Z coating as in stage 1

PFC implementation: Stage 3, 4

- Stage 3, divertor baffles
- Stage 4, with active pump

PFC implementation plan

		CFC	CFC panel coverage				Divertor			
PFC Stage:	panel support ribs Heating:	In- board limiter	NBI armor	Trim coil armor	Fast ion loss armor	Full CFC cover age	Diver- tor panels	Diver- tor baffles	Active Divertor pumping	
1	Ohmic		x							
2	3 MW NBI, 0.3 s	x	x	x	?			x		
?	6 MW NBI, 0.3 s	x	x	x	?	?		x		
?	2 MW RF, 0.5 s	x	x	x	x	?		?	?	
?	6 MW RF, 0.5 s	x	x	x	x	x		?	?	
3	6 MW NBI + 6 MW RF, 0.3 s	x	x	x	x	x	?		x	
4	6 MW NBI + 6 MW RF, 1.2 s	x	x	x	x	x	x		x	x

Project cost:

Program cost: