Baseline cooling concept

• Requirements / constraints:

- 15 minute cooldown
- copper is electrically isolated from tee
- No electrical continuity (loops) in copper parts in any direction
- No copper parts larger than 2 inches
- No electrical continuity through cooling tubing
- Fits in .08 inches laterally (not tube)

• Design

- Copper cladding, formed from flat developments, next to tee
- Copper chill plates on outside of winding pack connected to cladding
- Chill plates have electrical break
- Tubing brazed to copper strips
- Strips attached to chill plates

Baseline cooling concept, cladding fabrication

Baseline cooling concept, cladding to chill plate joint

- Several options for connecting cladding to chill plates
 - Brazing
 - Tig welding
 - Riveting
- Riveting looks pretty good

joints

- Difficult to make cladding
- Difficult to make chill plates
- Difficult to connect cladding to chill plates
- Difficult to connect tubing to chill plates
- Difficult to maintain electrical isolation to tee and avoid electrical around winding pack
- The above is expected to take three weeks longer per coil and cost a significant amount of money (>\$500k above estimate?)

Alternate mod coil cooling concept

Ex-clubbleg/tr-baseloads from Assating SerGuidebacter to being flow from sneproging, on version

Cooling passage fabrication sequence

operation	
windings will cool off faster	don't know yet
shell has more direct cooling	from manifold groove and inlet holes
fabrication	
no formed parts, only web side cladding, much easier than	
baseline to install	
web cladding does not have to track with coil, can be glued to	
web	
no tubing connections across electrical isolation	

Arithmetic for passages, flow rate, etc.

flat passages per inlet	1		
depth of passage	0.5		
width of passage	0.06		
length of passage	4.661		
cooled area	466.1	in^2	
uncooled area	2144.06		
cross sect. per passage	0.03	in^2	
total cross section / coil	3	in^2	
inlat procesure	100	noi	
inlet pressure	100		
exit pressure	15		
inlet and exit temp	77	K	
heat of vaporization	200	J/g	
heat input per pulse	1.03E+06	J/winding pack	max, coil 2, per tech. data
LN2 boil-off per pulse	5.13E+03		
	6.87E+00	l/winding pack /pulse	
cooldown time	15	min	
assumed inlet flow	0.015261	l/s	
	0.238455	gpm	
assumed exit (gas) flow	2562.5		
velocity in passages	1.32E+00	m/s	

operation	
tracking path turn-to-turn	~ 0.4 inches / elec. turn
ground wrap punctured at top and bottom of winding pack	
not enough area to cool down	
as soon as epoxy gets cold, LN2 will not vaporize	
pressure forces windings apart (100 psi * 233 in^2 = 10 tons of separating force)	passage area / uncooled area = 233/1070 =0 .2, stress in epoxy/glass ~ 20 psi
hard to balance flow among passages	use smaller orifice at top of passage
passages get clogged up	use larger orifice at top of passage
when winding pack squirms around on tee, the inlet holes do not match up well with the passages	use spring-loaded G10 bushing, held in by orifice?
fabrication	
additional machining may be expensive (100 - 200 more holes per winding form, 600 inches of groove to machine and weld closed	
cannot get passage-former out of potted winding pack	
weld seams distort coil	

Note: FDR documentation due Friday