Reconstruction of Modular Coil Shape from Magnetic Field Measurement

D. Strickler, S. Hirshman, B. Nelson, D. Williamson, L. Berry, J. Lyon

Oak Ridge National Laboratory 10/2004

Near Term Goals

- Demonstrate a method for accurately determining the modular coil winding center based on magnetic field measurement.
- Replace coil winding center representation with 3D coil model.
- Validate the procedure on the racetrack coil.

The shape of (as built) modular coils can be accurately determined from magnetic measurements

- We have developed both linear and nonlinear methods to reconstruct the shape of an NCSX modular coil from field measurements of either |B| or [B_x, B_y, B_z].
- It appears that a three axis hall probe, measuring components of the magnetic field in local coordinates, will work best for this application.
- 2000-3000 field measurements within 10-15 cm of the winding center are sufficient to reconstruct the coil centerline shape with average deviation of ≈ 0.05 mm (max. 0.25 mm) for sinusoidal distortions of magnitude 2 mm, and ≈ 0.1 mm (max. < 0.5 mm) for distortions of magnitude 5 mm, assuming
 - Field error in the magnetic measurements consistent with the hall probe technology,
 - Random error of magnitude ≤ 0.1 mm in the location of measurements.

Measurement locations are constrained by size and shape of the winding pack

Measurement region for data collection

Data will be collected by coupling a hall probe to a multi-axis measuring device

- Simultaneously measure magnetic field and location of measurement.
- NMR probes measure **B** very accurately, but have large sensing volume and require high field.
- Hall probe (<u>www.gmw.com</u>) measures B_x, B_y, B_z at lower field (10 2000 gauss) with sensing volume small relative to location error (±0.1 mm)

Accuracy of hall probe

- Components of field error:
 - offset error = ±1 gauss (can be subtracted from reading)
 - 0.1% of reading (= 0.001B)
 - noise component = \pm 0.2 gauss
- Measurement location error:
 - position error of measuring device = ± 0.1 mm
 - field sensitive volume = $[0.01 \text{ mm}]^3$

What are the limits on the coil for field measurement?

• Pulse length at ~ 300 gauss: 300 sec for 20 C temperature rise or

70 sec for 5 C rise

Numerical methods are compared for accuracy in shape reconstruction

- Linear approximation appears to give best results
 - Solve for corrections to design coil coordinates
 - Use singular-value decomposition
- Also considered nonlinear approximation methods
 - Parameterization of coil centerline
 - Fourier or cubic spline representation
 - Use Levenberg-Marquardt to find coefficients

For perturbations of prescribed phase and magnitude about the design coil shape, questions include:

- Number and location of measurement points?
- Is there sufficient accuracy in the field measurements and measurement location?

Procedure is tested on NCSX modular coil with known shape distortion

Sine, cosine coil distortions :

- $\Delta R = \delta r \sin(m\theta)$
- $\Delta \phi = \delta \phi \sin (m\theta)$
- $\Delta Z = \delta z \sin(m\theta)$

Random error included in:

- Magnetic field meaurement
- Location of measurements

Strickler, et. al

Linear Method Solve for coordinates of coil winding center

$\mathbf{x}_0 = [\mathbf{x}_{01}, \mathbf{y}_{01}, \mathbf{z}_{01}, \dots, \mathbf{x}_{0n}, \mathbf{y}_{0n}, \mathbf{z}_{0n}]^{T}$	ideal (design) coil coordinates
$\mathbf{B}_0 = \mathbf{B}(\mathbf{x}_0)$	magnetic field of ideal coil over 3D grid
$\mathbf{x}_0 + \Delta \mathbf{x}$	coordinates of actual coil (manufactured)
$\mathbf{B}_1 = \mathbf{B}(\mathbf{x}_0 + \Delta \mathbf{x})$	magnetic field of actual coil (measured)
$\mathbf{B}_1 - \mathbf{B}_0 = \Delta \mathbf{b} \approx \mathbf{B} \Delta \mathbf{x}$	B [´] = d B /d x is MxN Jacobian matrix
$\mathbf{B}' = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$	SVD
$\Delta \mathbf{x} = \sum_{\sigma n \neq 0} (\mathbf{u}_n^T \Delta \mathbf{b}) \mathbf{v}_n / \sigma_n$	least-squares solution for $\Delta \mathbf{x}$

Drop 'small' singular values $\sigma_n \,$ to stabilize solution, making it less sensitive to data vector $\Delta \bm{b}$

Distance between solution and distorted coil

- Distorted coil represented by N=500 segments, unit tangent vectors **e**_i^d.
- Evaluate solution **x** (approximating field of distorted coil) at N points.
- For each point x_i^d on distorted coil, find nearest solution point x_j^{*}, and perpendicular distance from solution point to distorted coil:

$$\Delta \mathbf{x}_{i} = \mathbf{x}_{i}^{\star} - \mathbf{x}_{i}^{d}, \qquad \Delta \mathbf{x}_{i}^{\parallel} = [\Delta \mathbf{x}_{i} \cdot \mathbf{e}_{i}^{d}] \mathbf{e}_{i}^{d}, \qquad \Delta \mathbf{x}_{i}^{\perp} = \Delta \mathbf{x}_{i} - \Delta \mathbf{x}_{i}^{\parallel}$$

• Distance between solution and distorted coil:

$$\Delta_{\text{avg}} = 1/N \sum_{i} |\Delta \mathbf{x}_{i}^{\perp}|, \qquad \Delta_{\text{max}} = \max\{|\Delta \mathbf{x}_{i}^{\perp}|\}$$

Distribution of Δx_i^{\perp} for winding center reconstruction

For linear method, Δ_{max} occures at points near plasma

Field measurement close to the coil improves accuracy in reconstruction of winding center shape

• sine coil distortion with m=6, $\delta r = \delta \phi = \delta z = 2$ mm

- I = 20 kA; Field error: $|\delta B| \le 0.2$ gauss + 0.1% of reading
- measurement location error ≤ 0.1 mm

Number of measurements	r _{min} [m]	Δ _{max} [mm]	Δ_{avg} [mm]
2250	0.10	0.240	0.051
2969	0.15	0.246	0.083
3495	0.20	0.827	0.121

For similar coil distortion and error in data, approximating magnetic field components gives better results than matching |B|

- Sinusoidal coil distortion, $\Delta R = \delta r \sin(m\theta)$, etc.., with m=6
- 2250 field measurements, $r \ge 10$ cm
- I = 20 kA; Field error: $|\delta B| \le 0.2$ gauss + 0.1% of reading
- Error in measurement location ≤ 0.1 mm

Field match	δr, δφ, δz [mm]	Δ _{max} [mm]	Δ_{avg} [mm]
[B _x , B _y , B _z]*	2.0	0.145*	0.023*
B	2.0	0.404	0.133
[B _x , B _y , B _z]	2.0	0.240	0.051
B	5.0	0.913	0.191
[B _x , B _y , B _z]	5.0	0.454	0.097

* No field measurement or measurement location error

Avg. deviation between solution and distorted coil Δ_{avg} < 0.1 mm obtained for distortions up to 5 mm

Nonlinear Method

Solve for coefficients in parameterization of coil winding center

 $\mathbf{x} = [\mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t)]$ coordinates of coil centerline $\mathbf{x}(t) = \mathbf{a}_{x0} + \sum \mathbf{a}_{x,k} \cos(2\pi kt) + \mathbf{b}_{x,k} \sin(2\pi kt)$, ...Fourier representation $\mathbf{c} = [\mathbf{a}_{x0}, \mathbf{a}_{x1}, \mathbf{b}_{x1}, \dots, \mathbf{a}_{zn}, \mathbf{b}_{zn}]^T$ vector of coefficients $\mathbf{B} = \mathbf{B}(\mathbf{c})$ magnetic field over 3D gridMinimize $\chi^2 = \|\mathbf{B}(\mathbf{c}) - \mathbf{B}_1\|^2$ \mathbf{B}_1 = field measurements on 3D grid

- Levenberg-Marquardt method to solve for coefficients
- Initial guess for c based on fit to design coil data
- Option in code for cubic spline representation: $x(t) = \sum c_{x,k} B_k(t), ...$

Nonlinear shape reconstruction of distorted modular coil requires > 150 of variable coefficients

• $sin(5\theta)$ distortion with $\delta r = \delta \phi = \delta z = 2mm$

10/2004

Strickler, et. al

Differences between solution and distorted coil are slightly larger using the nonlinear method (compared to linear method), for similar measurement error and distortion size

- sine coil distortion with m=6, $\delta r = \delta \phi = \delta z = 2.0$ mm
- 2250 measurements, $10 \le r \le 15$ cm
- I = 20 kA, $|\delta B| \le 0.2$ gauss + 0.1% of reading
- Error in measurement location ≤ 0.1 mm

N _c	$\Delta_{\sf max}$ [mm]	Δ_{avg} [mm]
159	1.015	0.451
315	0.309	0.113

Summary

- The "as built" NCSX modular coil winding center shape can be reconstructed with average error ≈ 0.05-0.1 mm for shape distortions of magnitude 2-5 mm and measurement error within limits of the hall probe technology.
- 2000 3000 field measurements within 10-15 cm of the (design coil) winding center are sufficient to reconstruct a coil centerline represented by ~500 segments.

To complete the task:

- Replace coil winding center representation with 3D (magfor) coil model.
- Transform field measurements in hall probe coordinates to coil coordinate system
- Test procedure on racetrack coil

Knowing the true shape of the coils, we can find the coil orientation and/or currents to optimize the vacuum field configuration

- Summary of recent STELLOPT modifications for vacuum field optimization
- Example

Module (VACOPT) added to stellarator optimization code (STELLOPT) to target resonances in vacuum magnetic field

- Minimize size of vacuum islands resulting from winding geometry errors by varying position of modular coils in array, or displacements due to magnetic loads / joule heating by varying coil currents.
- Additional STELLOPT variables include rigid-body rotations, shifts about coil centroid, and vacuum field coil currents.
- New targets include residues of prescribed resonances, bounds on variables, and constraints on position of the island O-points.
- Input list now contains poloidal mode numbers of targeted islands, initial values of vacuum field coil currents, shifts and rotations, and initial positions of control points for each modular coil.
- Output includes optimal coil currents and position of control points following optimal shifts / rotations of the modular coils.

Targeting Magnetic Islands in Vacuum Field Optimization

- Locate O-points of islands (order m fixed points of return map) $\mathbf{X}_i = (R_i, 0)$
- Following [1], compute residues of targeted islands

 $Res_i = [2 - trace(T(\mathbf{X}_i))]/4$

Optimization

Vary coil currents to minimize targeted residues:

min. $\chi^2 = \Sigma w_i Res_i^2$,

Subject to possible constraints, e.g.:

$$\begin{split} & \Sigma \ I_{MOD} + I_{TF} = \text{constant} \\ & R_{min} \leq R_i \leq R_{max}, \ (\text{in prescribed toroidal plane } v = v_i) \\ & \text{Bounds on modular coil currents} \end{split}$$

[1] Cary and Hanson, Phys. Fluids 29 (8), 1986

10/2004

Strickler, et. al

Example: Vacuum field optimization by shifts and rotations about the centroids of modular coils

•Coil currents from 1.7T, high beta scenario at t=0.1s (vacuum) •Minimize m=7 residue

•Constrain radius of O-point by $R \le 1.18m$ (Z=0)

Example (cont'd): shifts and rotations about modular coil centroids for constrained minimization of the m=7 residue

	$\Delta x (mm)$	Δy (mm)	$\Delta z (mm)$	θ	φ	α*
M1	0.5	10.9	0.2	0.9866	-0.9471	0.0031
M2	3.0	-1.9	15.1	-0.0494	0.2878	-0.0058
M3	-0.7	-0.9	2.2	0.0669	0.0791	0.0056

* α measured with respect to unit rotation vector centered at coil centroid with sperical coordinate angles θ , ϕ .

Maximum changes in the control points are 1.17cm (M1), 1.58cm (M2), and 0.67cm (M3).

Summary

- Vacuum islands resulting from winding geometry errors may be minimized by varying position of modular coils in array
- Vacuum islands resulting from coil displacements due to magnetic loads / joule heating may be reduced in size by varying coil currents.
- Need to account for non-stellarator symmetric field errors

Additional Slides

Quality of linear shape reconstruction depends on number of singular values retained (N_{σ})

- Consider $sin(5\theta)$ distortion of modular coil M1 with $\delta r = \delta \phi = \delta z = 2 \text{ mm}$
- Random measurement error in field: $\delta B/B_{max} \le 1.e-5$, location ≤ 0.1 mm

Strickler, et. al

Linear coil shape reconstruction from magnetic field | B |

- sine coil distortion with m=6, $\delta r = \delta \phi = \delta z = 0.002$ m
- 3495 measurements, 0.2 m \leq r \leq 0.25 m
- error in measurement location ≤ 1.0e-4 m
- error in field measurement $\delta B/B_{max} \le 2.5e-4$

σ _{min} / σ _{max}	Ν _σ	χ _{field} [T]	Δ_{avg} [m]
0.015	132	1.697e-5	4.268e-4
0.025	116	1.702e-5	2.464e-4
0.050	94	1.707e-5	1.503e-4
0.075	82	1.710e-5	1.494e-4
0.100	74	1.718e-5	1.237e-4
0.125	66	1.732e-5	1.527e-4

Field Line Equations and Tangent Map

•Magnetic field line is described by $d\mathbf{x}/ds = \mathbf{B}(\mathbf{x})$

•In cylindrical coordinates (and assuming $B_{\phi} \neq 0$), these are reduced to two <u>field line equations</u>: $dR/d\phi = RB_R/B_{\phi}$, $dZ/d\phi = RB_Z/B_{\phi}$

•Integrating the field line equations, from a given starting point (e.g. in a symmetry plane), over a toroidal field period, produces a return map $\mathbf{X}' = \mathbf{M}(\mathbf{X}) (\mathbf{X} = [\mathbf{R}, \mathbf{Z}]^t)$

•An <u>order m fixed point</u> of M is a periodic orbit: $\mathbf{X} = M^{m}(\mathbf{X})$

•The dynamics of orbits in the neighborhood of a fixed point are described by the tangent map: $\delta \mathbf{X}' = T(\delta \mathbf{X})$

(where
$$T_{11} = \partial M_R / \partial R$$
, $T_{12} = \partial M_R / \partial Z$, $T_{21} = \partial M_Z / \partial R$, $T_{22} = \partial M_Z / \partial Z$)