
High Temperature Superconducting Cable

Ultera[™]

WE DELIVER POWER

Superconductivity Program for Electric Systems U.S. Department of Energy

2005 Annual Peer Review

AEP 。

PRAXAIR

A Southwire / nkt cables Joint Venture

August 2-4, 2005 Washington, DC

Oak Ridge National Laboratory U. S. Department of Energy

Presentation Outline

- Introduction (David Lindsay, Southwire)
 - Overall SPI Goals & Objectives
 - Design Approach
 - Review FY 2005 Milestones
- FY 2005 Results
 - 30-m Cable Operation and Testing (David Lindsay, Southwire)
 - AEP project
 - Overview
 - HTS Tape Status, Cryogenics Status
 - Mechanical verification tests of cable & cryostat for pulling
 - Worst-case fault current tests
 - Cable/Term. Research & Testing at ORNL (Jonathan Demko, ORNL)
 - Qualification tests for Triax cable + terminations
 - Cryogenic Dielectrics Research (Isidor Sauers, ORNL)
- FY 2005 Performance
- Planned FY 2006 & FY 2007 Milestones
- Program risk mitigation strategy
- Research Integration
- Summary

AEP Project Partners

Partner		Area of Responsibility/Expertise
Southwire/nktc/Ultera	Ultera TM A Southwire / nkt cables Joint Venture	Cable design, manufacturing, termination design, installation, cryo system design, systems integration, O&M, project management
AEP	AEP	Installation site engineering, site civil & electrical construction, Commissioning, Monitoring, O&M
ORNL	ornl	Cable research, termination research, testing, cryo design
Praxair	PRAXAIR	Cryogenics system design, construction, operations & service
AMSC	Superconductor	HTS tape supplier

Project Participants

Southwire/Ultera

John Armstrong Zack Butterworth Randy Denmon Terry Dyer Gary Hyatt Kim Knuckles David Lindsay

• AEP

Doug Fitchett Albert Keri Dale Krummen John Schneider Ben Mehraban Harry Tumageanian Sammy Pollard David Reece Mark Roden Jerry Tolbert Nick Ware Dag Willen Chresten Traeholt

Oak Ridge National Laboratory

Jonathan Demko Robert Duckworth Alvin Ellis Paul Fisher Mike Gouge Randy James

Praxair

John Royal Rick Fitzgerald Nancy Lynch Barry Minbiole Jeff Kingsley

• AMSC

Larry Masur Angelo Santamaria

Winston Lue Marshall Pace Isidor Sauers Bill Schwenterly Dennis Sparks Marcus Young Chris Rey

SPI Project Goals & Objectives:

• SPI-1: 30-m Installation, Carrollton, GA

 The cable system will continue to be operated and studied. Optimizations will be made to improve operating efficiencies and reliabilities.

• SPI-2: Bixby Substation, AEP, Columbus, OH

- -To complete a 200m cable demonstration with AEP
 - Install 13.2 kV, 3.0 kA (69 MVA) HTS cable system in Bixby substation, about 2 times the power of the Carrollton, GA demonstration
 - Highest current cable project
 - Length would be on the order of 7 times the Carrollton, GA demonstration
 - Design and install a simplified and reliable cryogenic system based on prior experiences
 - Demonstrate pre-commercial feasibility of an underground installation.

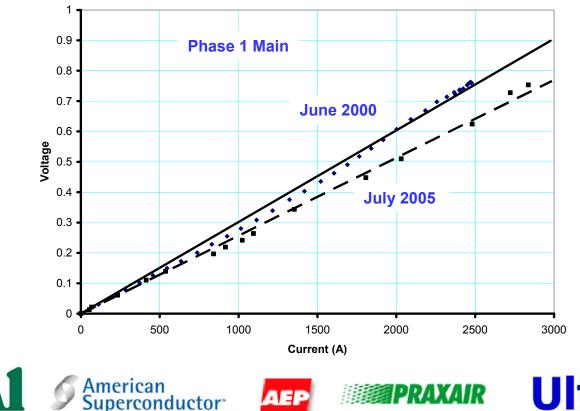
Basic SPI Project Approach

An integrated team from Ultera, ORNL, PX, AMSC and other industry partners will design, build and install a reliable cable system.

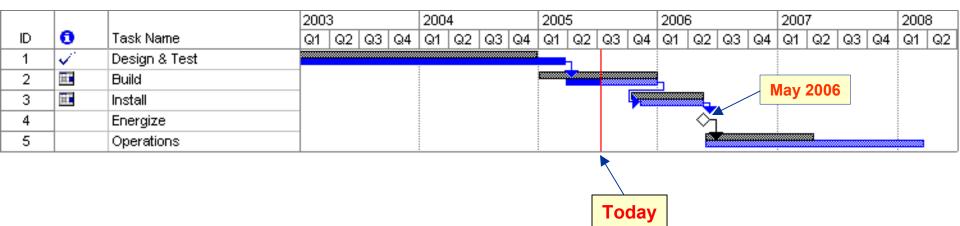
- Cables, terminations and other component sub-systems will be prototyped and fully tested in the lab prior to implementation
 - Designs evaluated by use of computer modeling
 - Design verification and proto-type testing is facilitated through the use of the 5-m test-bed at ORNL
- Where needed, expertise will be brought to the team through the use of outside contractors/consultants
- Ultera & ORNL will work with electric utilities to identify market applications and guide technology development to achieve a commercially viable product which meets industry needs.

Southwire/ORNL FY 2005 Plans Oct. 1, 2004 to Sept. 30, 2005

- SPI-1: 30-m Installation, Carrollton, GA
 - SPI contract expires 9/30/2004. Final technical report due to DOE.
 - EXTENDED TO 6/30/05 Final tech report submitted. Other close-out docs pending.
 - Disposition of system Southwire will continue operation.
- SPI-2: Bixby Substation, AEP, Columbus, OH
 - 1Q,FY2005 (Oct-Dec 2004)
 - Assemble and test full scale terminations for 3 kA 5-meter cable prototype. Cmplt.
 - Fault current and bend testing of 3-meter triaxial cable. COMPLETE
 - Finalize design of cryogenic system. COMPLETE
 - 2Q,FY2005 (Jan-Mar 2005)
 - Bend test of 5-meter triaxial cable. COMPLETE
 - Splice test of 5-meter triaxial cable. Design COMPLETE, Build/Test PENDING
 - Mechanical verification test of cryostat/cable assembly. COMPLETE
 - 3Q,FY2005 (Apr-Jun 2005)
 - Begin construction of triaxial cables for AEP project. COMPLETE
 - Begin civil/electrical work at Bixby site. Dsgn ONGOING, Constr. will start 8/05
 - 4Q,FY2005 (Jul-Sept 2005)
 - Ongoing system construction. Under Way
 - Complete construction of triaxial cable. PENDING
 - 1Q, FY2006 (Oct-Dec 2005)
 - Begin on-site installation of equipment.



DC-VI results of 30-m cables show no change in conductor performance.

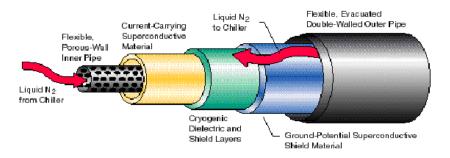

- Voltages are measured from bus, so there is a normal resistive component.
 - The voltage taps and connecting bus was different for the two measurements.
- Three phase conductors' I_c above 3 kA limit of power supply.
- The shield I_c remained unchanged above 2 kA.

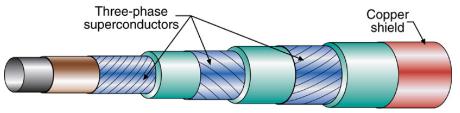
OTT

AEP-Southwire Project Timeline

Project Status:

- Design & Qualification tests ran longer than expected
- Overall project still on schedule to energize as planned
- On Budget





Comparison of HTS Cable Designs

30-m System Single-Phase, Co-axial Design

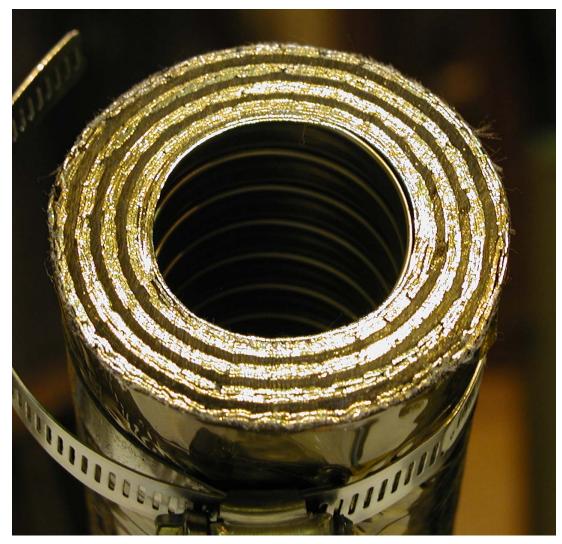
Features of the Co-axial HTS cable

- Magnetic field shielded.
- Both conductor and dielectric are wrapped from tapes.
- Cryogenic dielectric reduces size and increases current carrying capacity.
- Flexible cable to allow reeling

Features of the tri-axial cold dielectric HTS cable

- Highest current density design
- Potential to reduce the required HTS tape by ${\sim}1/2$
- Potential to reduce heat loads by $\sim 1/2$
- Flexible cable to allow reeling.
- Cable + Termination designed for 3000
 A_{rms} to meet AEP project requirement.

A Southwire / nkt cables Joint Venture


11

HTS Triax Cable Capable of Carrying 3000 A was Manufactured by Ultera

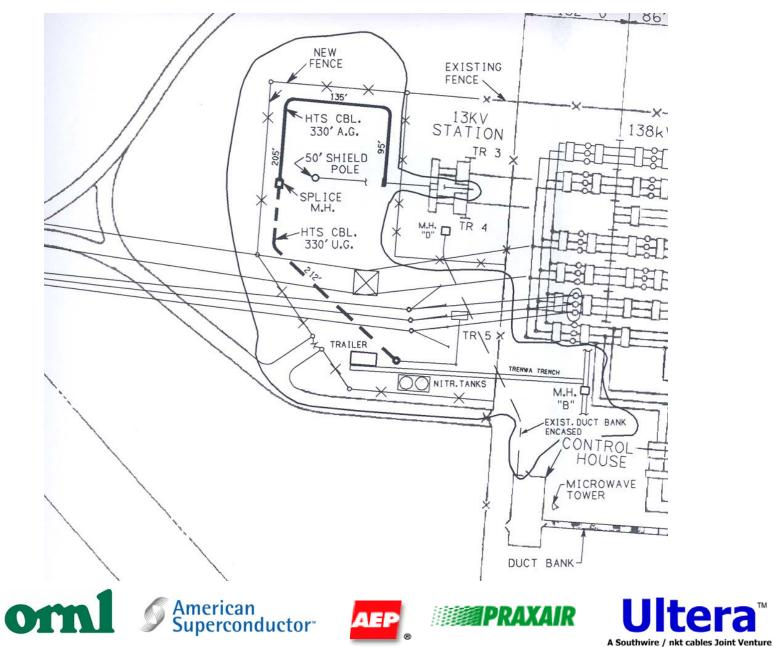
'AEP Project'

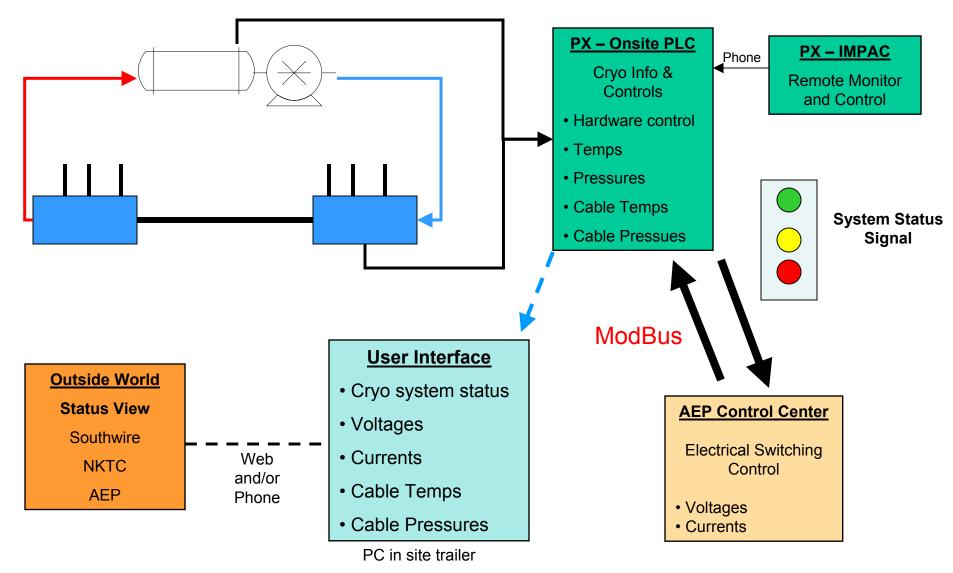
U.S. Department of Energy SPI Phase-III

- Utility Partner = American Electric Power
- Location = Bixby Substation, Columbus, OH
- Length = 200 meters
- Voltage = 13.2 kV
- Load Rating = 3.0 kA_{rms} AC / 69 MVA
- Fault Current Peak = ~56 kA asymmetric
- Cable Design = Triax
- Other Features = Splice

Underground Multiple 90° Bends

Energize mid-2006





AEP Site Layout

System Operational Monitoring and Controls

AMSC HTS Hermetic Wire

Bismuth based, multi-filamentary high temperature superconductor wire encased in a silver matrix and laminated with brass to increase mechanical strength and provide a hermetic seal.

Specifications:

Average thickness:	0.36-0.44 mm		
Minimum width:	4.0 mm		
Maximum width:	4.45 mm		
Min. double bend diameter (RT):	70 mm ⁱ		
Max. Rated tensile stress (RT):	175 MPa ⁱ		
Max. Rated wire tension (RT):	20 kg ⁱ		
Max. Rated tensile stress (77K):	200 MPa ^{i, ii}		
Max. Rated tensile strain (77K):	0.30% ^{i, ii}		
Hermeticity	30 atm LN2 for 16 hours ^{iv}		

Customer Options:

Minimum amperage (lc)	Average engineering current density (Je)"		
115 A"	6,700 A/cm ^{2 ii}		
125 A"	7,300 A/cm ² "		
135 A"	7,900 A/cm ² ⁱⁱ		
145 A [#]	8,500 A/cm ² "		
Continuous piece length	Up to 800 m		
Insulation options	PTFE or Kapton wrap		
Splice options	Spliced wire is available in longer lengths		

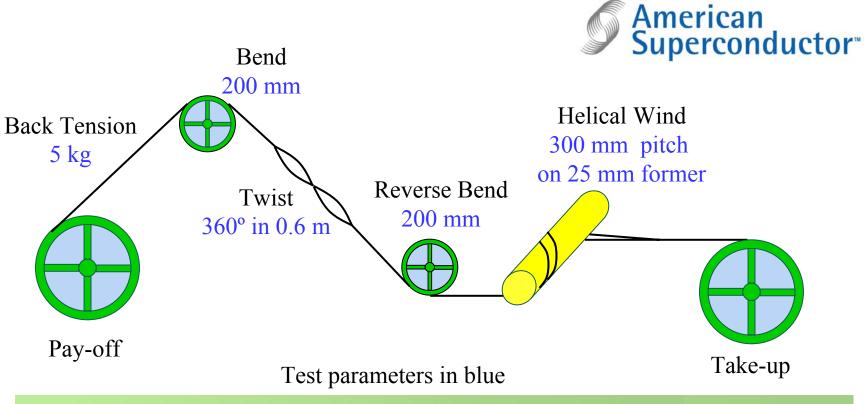
'Greater than 95% Ic retention

" 77K, self-field, 1µV/cm

" Je is a calculated value based upon average thickness and width

" Thickness inspection after pressurized LN2 test

Designed for use in applications where the wire is exposed to pressurized liquid cryogens



Tape Reliability Testing: Mechanical Aging Test

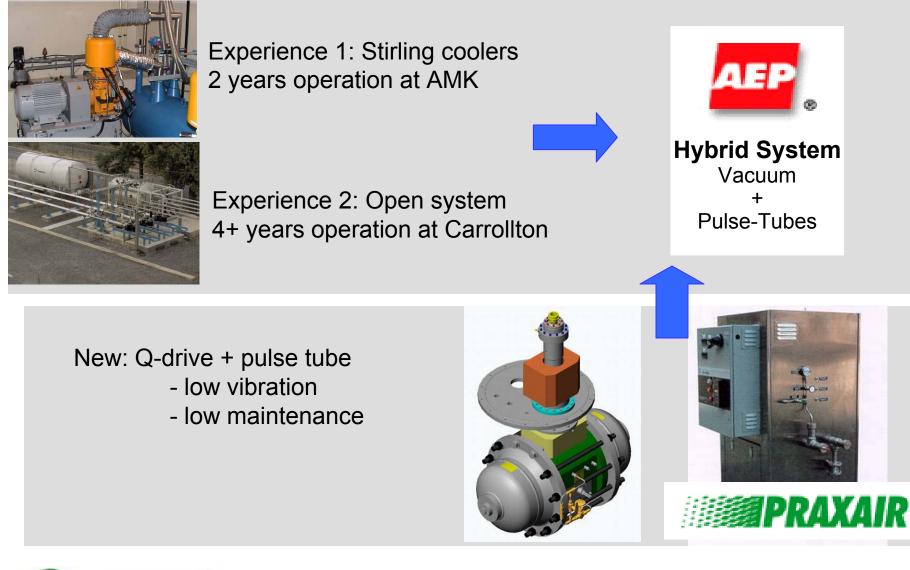
Wire and splices designed to be hermetic and survive bending & twisting

Tested to meet or exceed conditions of cable stranding processes

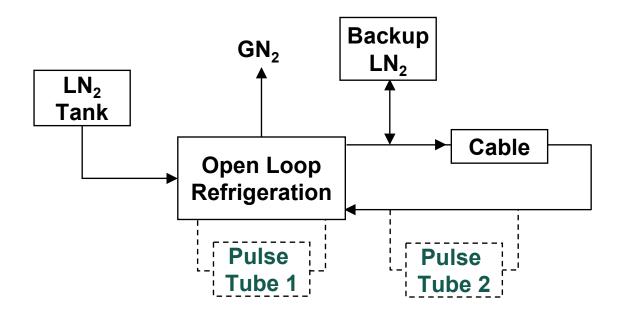
HTS Tape Production Status

- Length Requirements:
 - -184 pieces x 265 meters each = 48,760 meters
- Ic Requirement (77K, 1μV/cm) > 115 amps
- Status as of July 31, 2005
 - -All wire manufacturing complete at AMSC
 - -All wire shipped from AMSC to Ultera

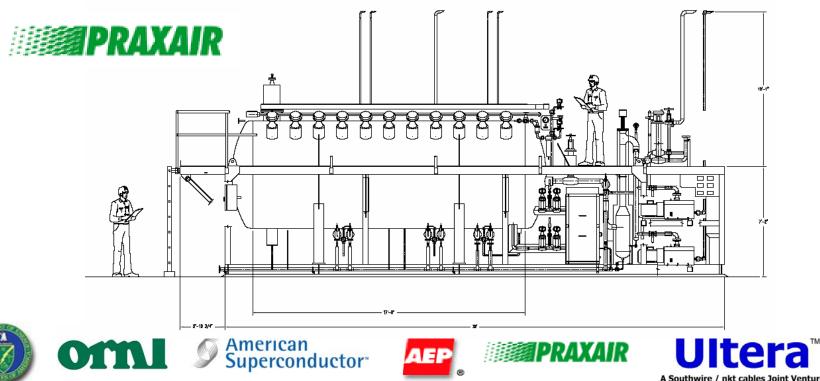
AMSC commercial HTS wire manufacturing meets large volume cable requirements



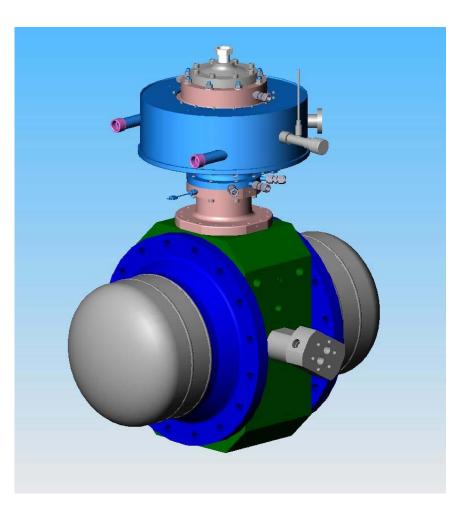
Cryogenic Cooling



HTS Cable Demonstration Cryogenic System Overview Integration

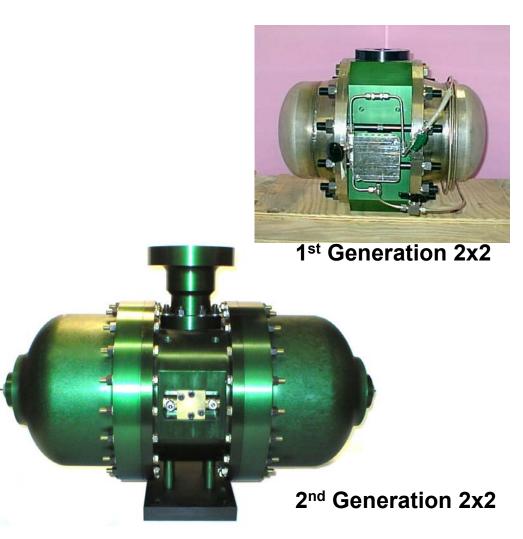


HTS Cable Demonstration Open Loop Refrigeration System and Equipment


- Vacuum system skid detail design underway
- Major equipment on order/received; vacuum skid fabrication awarded (PHPK)
- Overall layout completed
- Installation scheduled for December 2005

HTS Cable Demonstration Large Cryocooler Development

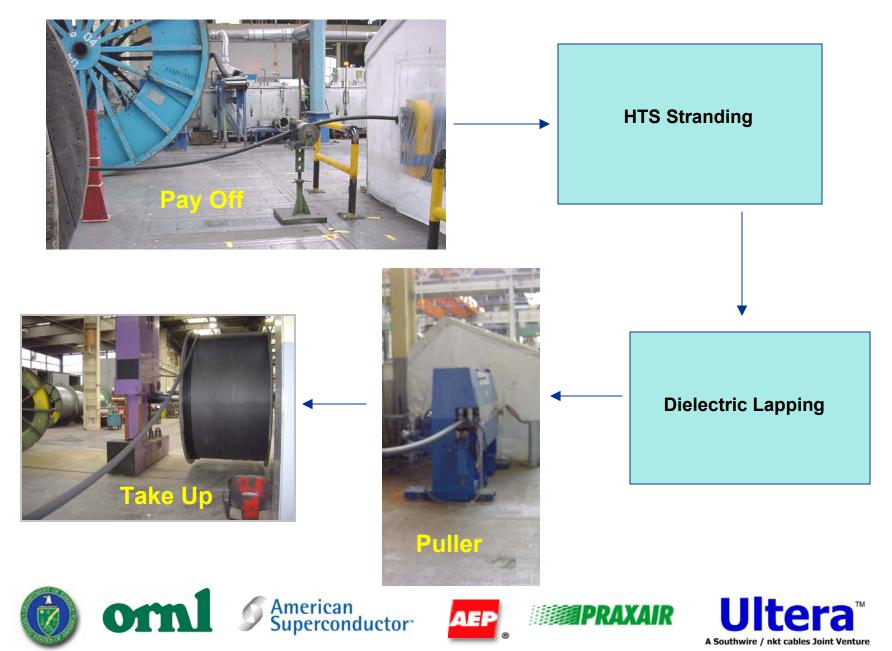
- Design Target: 1kW at 70K
- Modular unit designed and fabricated
- No Load Temperature: 57K
- Testing, modification and development ongoing



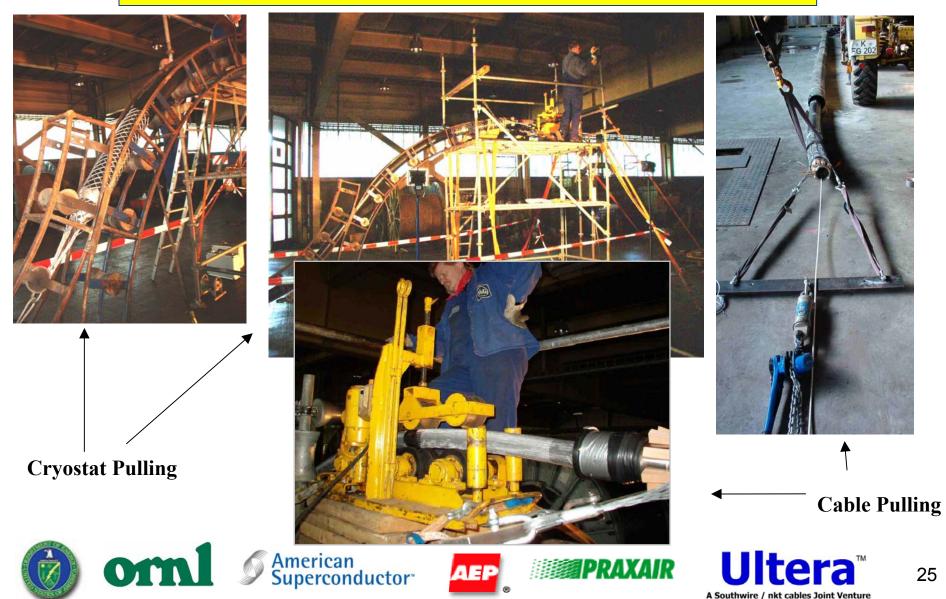
HTS Cable Demonstration Large Cryocooler Development

- Second generation PWG in development (CFIC)
 - -Lower cost
 - -Lower weight
 - –Improved efficiency
- Suspension re-design
 - Current design passed initial hurdle (10⁸ cycles at 100% of stroke
 - Overstroke testing underway
- Design complete, components in fabrication

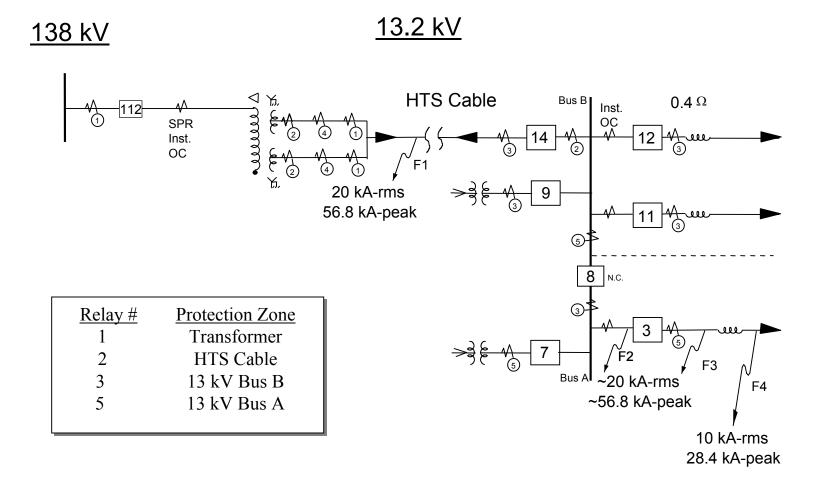
Pressure Wave Generator (PWG)



AEP



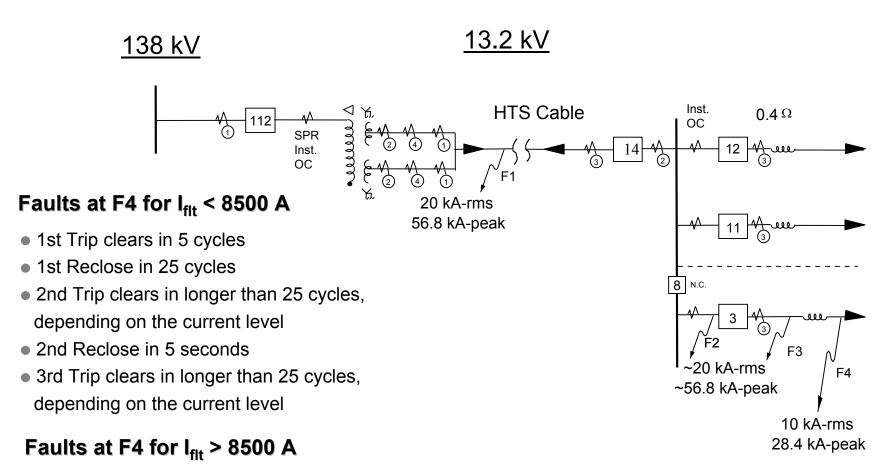
Cable Stranding – Manufacturing Commissioned



Pulling & Mechanical Verifications

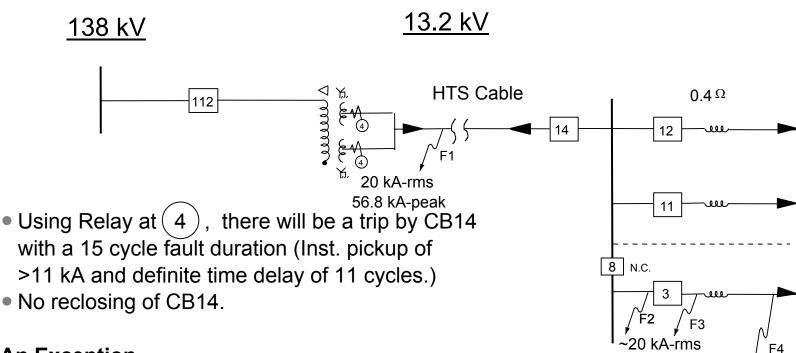
No damage or degradation to cable or cryostat from pulling

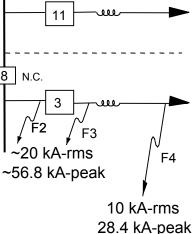
Fault current / protection at Bixby 13.2 kV



Faults on Distribution Lines

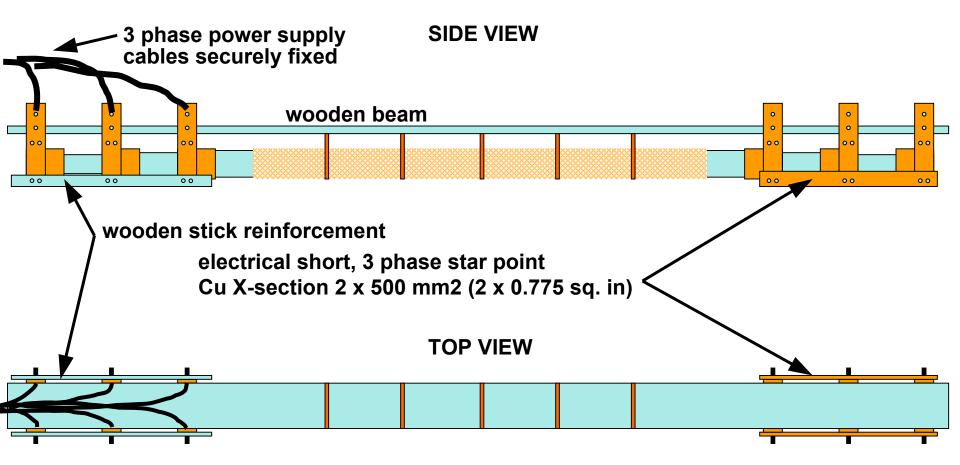
Sequence as above except all trips will be instantaneous (~5 Cycles)



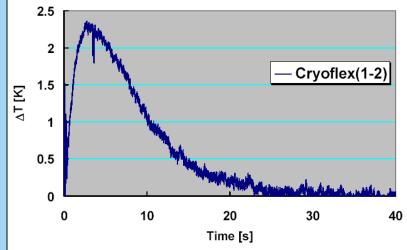

Faults Between Dist. Breaker (s.a. CB3) and into Series Reactor with Breaker (CB3) Failure. $I_{fault} > 11kA$.

An Exception

• For fault currents <11 kA, and with distribution breaker failure, fault clearing will follow back-up overcurrent relay time delay curve setting, at CB14.



Ultera 09, fault current set up

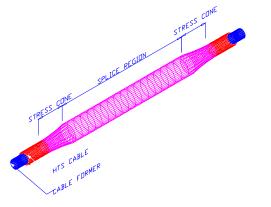


Worst-Case 'Thermal' Fault Current Test

Results of 3 phase "thermal" fault current

- 1) LN2 @ 77.3 K, ambient pressure (open bath)
- 3 x Irms ≈ 22.2 kA, duration 246 ms (<2% off),
- 3) I1_{peak} ≈ 44 kA, I2_{peak} ≈ 39 kA, I3_{peak} ≈ 46 kA
- 4) V1 not recorded (broken volt. leads), V2peak
 ≈ 8 mV/cm, V3peak ≈ 10 mV/cm
- 5) End of fault, cable still superconducting based on voltage trace
- 6) No dramatic effect, no obvious/visible damage

	I _{peak} [kA]	I _{rms} [kA]	U_{peak} [V/cm]	Urms [V/cm]	$\int I^2(t) dt$
Ph 1	(-) 44.4	21.9	-	-	121 [.] 10 ⁶ A ² s
Ph 2	(-) 39.2	23.1	1.36	1.26	134 [.] 10 ⁶ A ² s
Ph 3	45.6	21.7	2.43	1.34	118 [.] 10 ⁶ A ² s



Cable Splice

Prior Experience: 12.4 kV, Single-Phase Coax Cable

Successful Testing:

- AC Withstand
- BIL to 110 kV
- FC to 12 kA, 60 cycles

Design Includes:

- HTS tape splices
- Dielectric splices
- Stress cones

Triax Cable Splice Design

- Based on coax experience
- Improved techniques
- Design will minimize radial build
- Approx 1.5 m total length for 3 phases
- Field weld vacuum enclosure around splice region
- Presented in detail to Readiness Review Panel

Multiple Prototypes to be made:

- Design will be build & tested using 3m
 & 5m cables from prior work
- Ic and voltage tests to verify design
- Work will be completed during 4Q, FY05

Triax Cable + Termination Qualification

The following has been successfully tested:

- 1. Single-phase DC current tests (measure critical current)
- 2. 3-phase DC currents at 3 kA for 14 hours (thermal stability)
- 3. Single-phase AC current to 3 kA (AC loss measurements)
- 4. 3-phase AC current to 3 kA (thermal stability for cable + terminations)
- 5. Single-phase rated voltage for 1 hour
- 6. 3-phase rated voltage for 1 hour
- 7. PD measurements at 15.6 kV, single-phase (per IEEE 48-1996 termination spec)
- 8. AC withstand to 39 kV, single-phase (per ICEA S-94-649-2000 cable spec)
- 9. BIL to 110 kV (per IEEE & ICEA specs)

Presentation Outline

- Introduction (David Lindsay, Southwire)
 - Overall SPI Goals & Objectives
 - Design Approach
 - Review FY 2005 Milestones
- FY 2005 Results
 - 30-m Cable Operation and Testing (David Lindsay, Southwire)
 - AEP project scope & tech requirements
 - Cable Research at ORNL (Jonathan Demko, ORNL)
 - Cryogenic Dielectrics Research (Isidor Sauers, ORNL)
- FY 2005 Performance
- Planned FY 2006 & FY 2007 Milestones
- Program risk mitigation strategy
- Research Integration
- Summary

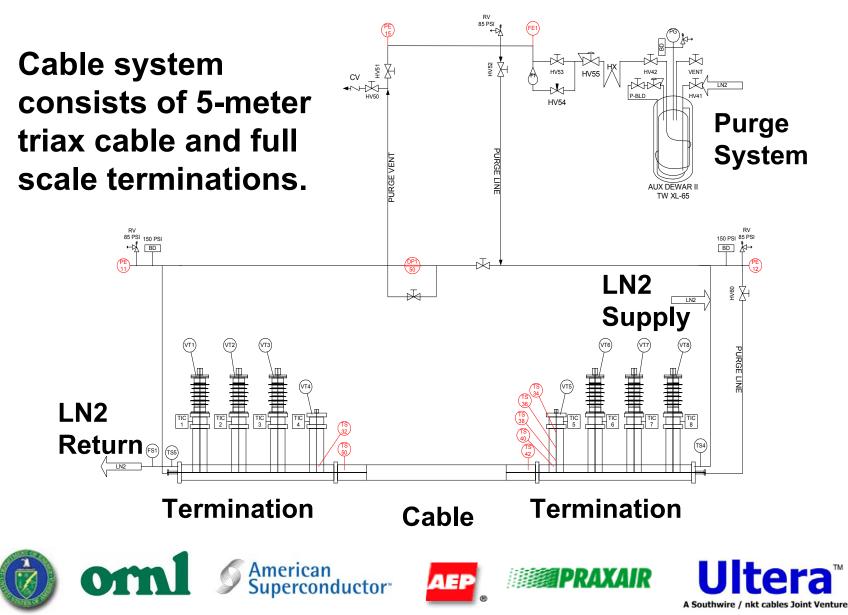
Triaxial cable bent 90° set-up for DC testing at ORNL.

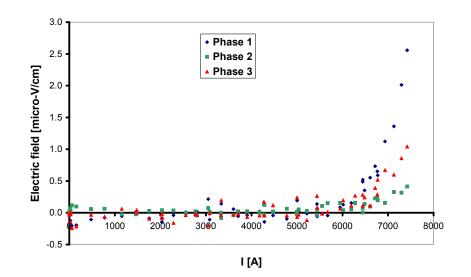
Extensive series of tests for the straight configuration

- Low Voltage DC Test
 - Measurement of V-I curves, I_c
 - Long duration hold at 3000 A for 14 hours in all 3 phases
- Low Voltage AC Test
 - -Hold at 2500 A ac and 3000 A ac
- High Voltage, Low Current
 - Single phase hold at 7.6 kV 1 hour
 - PD measurement at 15.6 kV
 - AC Withstand to 34-39 kV for 5 minutes at 3.5 kV steps
 - Three Phase ac voltage for 1 hour at 7.4 kV
 - -BIL test at +/- 110 kV (5 positive and 5 negative pulses) per phase
 - PD measurement at 15.6 kV
- Low Voltage Fault Current Test
 - Single phase 10 kA overcurrent for 0.7 sec
 - Three phase 10 kA overcurrent for 0.7 sec.

Extensive series of tests for the 90° bent configuration

- Low Voltage DC Test
 - –Measurement of V-I curves, I_c
- High Voltage Low Current
 - -Single phase hold at 7.6 kV 1 hour
 - -PD measurement at 15.6 kV
 - -AC Withstand to 34-39 kV for 5 minutes at 3.5 kV steps
 - -Three Phase ac voltage for 1 hour at 7.4 kV
 - -BIL test at +/- 110 kV until breakdown between phase 1 and 2
- Low Voltage Fault Current Test
 - -Single phase 10 kA overcurrent for 0.7 sec
 - -Three phase 10 kA overcurrent for 0.7 sec.
- Low Voltage DC hold at 3500 A for 3 hours



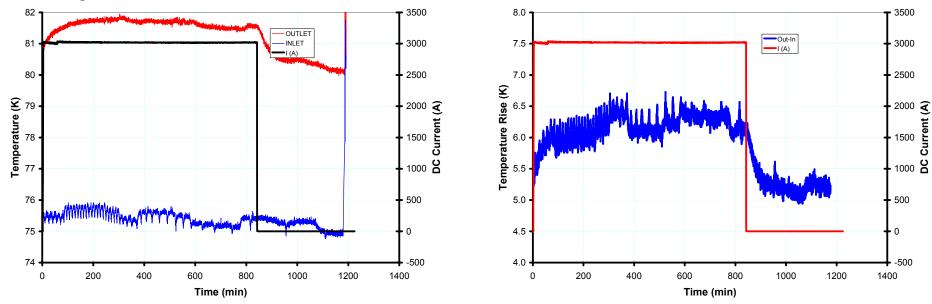

Simplified P&ID for triaxial HTS cable system without LN2 skid.

38

Initial DC V-I measurements in straight configuration show I_c > 7 kA for all phases

- Nitrogen subcooler was under vacuum
 - Cable system inlet at 75.9K
 - Cable system outlet at 81.1 K
 - Average temperature 78.5 K
- All three phases measured simultaneously.
- Phase 2 I_c was extrapolated.
 n-value based on data for I<I.

ased on data for I <i<sub>c</i<sub>	Phase 1	Phase 2	Phase 3
Length (cm)	1058	881	716
Critical Current (A)	7017	7960	7454
n-Value	14.7	12.3	10.0

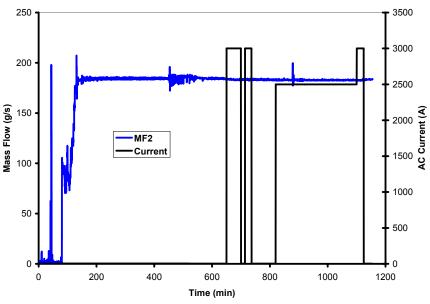


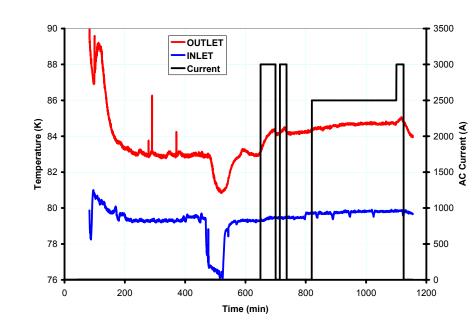
3000 A DC Testing with vacuum in subcooler.

- Inlet and outlet temperatures from cable system.
- Subcooler at ~6.4 psia, bath temperature ~ 71 K

- Temperature rise across cable system.
- Responds quickly to drop in current.

- •Met AEP Bixby heat load budgets when extrapolated to 200 m cable.
- Increase in heating is 425 W with full current applied.

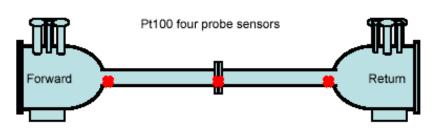


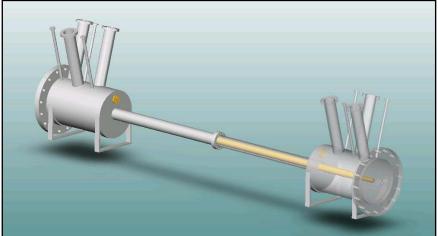


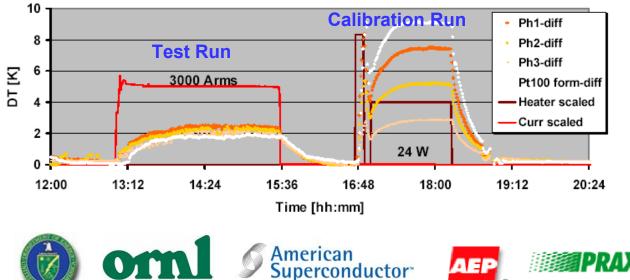
The cryogenic system parameters nearly steady during ac current testing at 2500 A_{rms}

- Mass flow measured with coriolis flow meter was steady.
- Subcooler was open to atmosphere except for a short duration prior to applying current.

- Inlet temperature steady, and outlet temperatures approach steady state with current applied.
- Briefly operated at 3 kA_{rms}







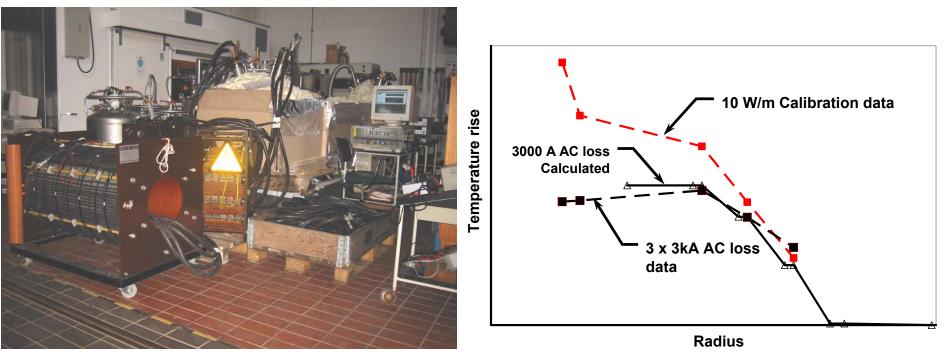
Ultera in Denmark has conducted 3-phase testing of a 3-meter triaxial cable at 3 kA to verify AC Loss

Tested in pressurized liquid nitrogen, T = 79 K

∆T at 60 Hz

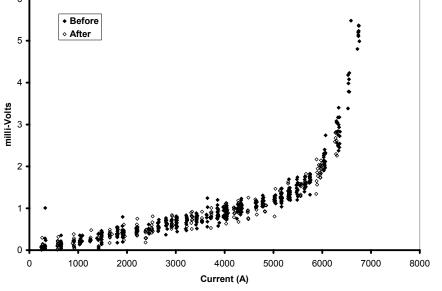
1st **Proto-type**:

3-Phase Triax conductor tested to 3.0 kA on all phases simultaneously. ΔT was within limits and stable. Acceptable ac loss results

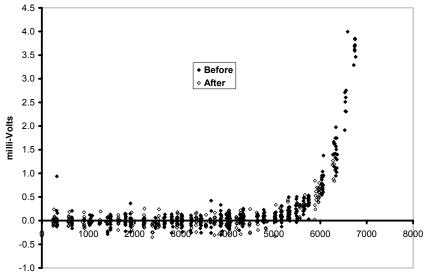


Ultera measured ac loss on the 3-meter triaxial cable with 3 kA on all three phases.

- Testing conducted in pressurized test chamber at around 2 bar.
- No high voltage testing was conducted.
- AC loss about 8.2 W/m for the three phases at 79 K.
 - AEP cable will operate at lower temperatures hence lower ac losses (~3-6 W/m, due to varying temperature along the cable).



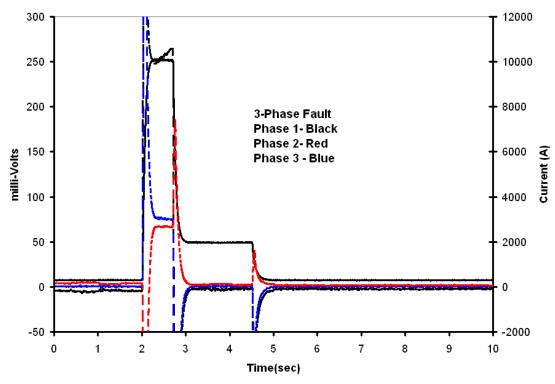
Phase 1 V-I characteristics did not change from application of overcurrent (fault)


 As measured data that includes the resistance of the copper block where the voltage taps were attached.

Similar data for phases 2 and 3.

- After correcting for resistance.
- I_c unchanged after pulse.

Current (A)



Measured the response of the triaxial cable to a 3-phase fault.

- Response similar to individual phases.
- All phases remained superconducting.
- 10 kA for 0.7 sec is same requirement as Bixby 56 kA.

American Superconductor[®]

Similar current to F4 fault (10 kA_{rms}).

HE PRAYAIR

A Southwire / nkt cables Joint Venture

Presentation Outline

- Introduction (David Lindsay, Southwire)
 - Overall SPI Goals & Objectives
 - Design Approach
 - Review FY 2005 Milestones
- FY 2005 Results
 - 30-m Cable Operation and Testing (David Lindsay, Southwire)
 - AEP project scope & tech requirements
 - Cable Research at ORNL (Jonathan Demko, ORNL)
 - Cryogenic Dielectrics Research (Isidor Sauers, ORNL)
- FY 2005 Performance
- Planned FY 2006 & FY 2007 Milestones
- Program risk mitigation strategy
- Research Integration
- Summary

High voltage and dielectrics tests were conducted to validate the design and minimize risk.

- Composite cylinders and disks
- Axicom bushing
- Half scale termination model
- Full scale termination model
- 5-m cable system tests
 - -Triax Cable + Termination Qualification Tests
 - AC withstand
 - PD measurements
 - Impulse
 - –Extended Test Program
 - Bend cable 90°
 - Repeat test sequence (rated voltage, AC withstand, PD, BIL)

Passed All Qualification Tests !

Half scale model of termination dielectric parts were tested prior to fabricating full size parts

TEST ASSUMPTIONS

- IEEE Standard 48-1996 for terminations:
 - -PD < 5 pC at 1.2 x 13 kV = 15.6 kV
 - Or PD extinction: 13 kV_{rms}
- AEP to be 7.6 kV_{rms} phase to ground
- Tested in HV cryostat in LN2 up to 6 Bar pressure
- Full scale should increase margin of safety

Conclusions

- Half scale provides validation of design
- Suggests that full scale will meet HV requirements

RESULTS

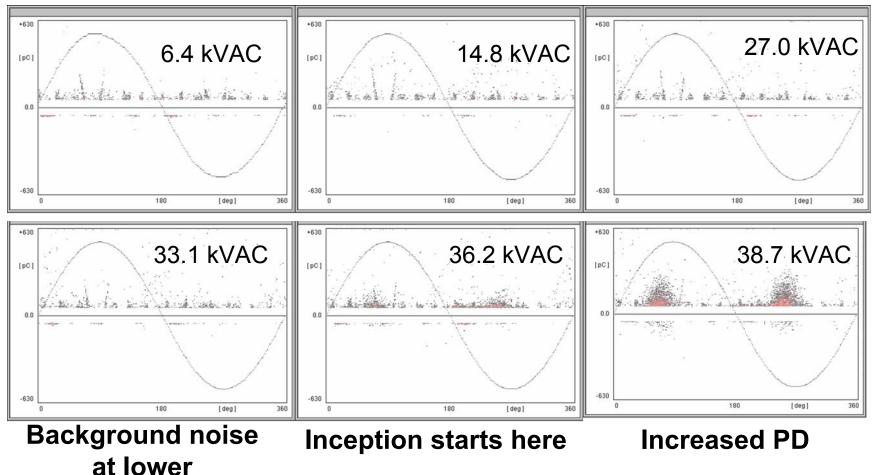
- PD inception exceeded 7.6 kV phase to ground.
- PD onset increased with N2 gas pressure
 - -6 bar N2 gas:
 - 11 kV_{rms} onset;
 - 7.5-8 kV_{rms} ext.
 - -6 bar LN2:
 - 10 kV_{rms} onset;
 - 8.5 kV_{rms} ext.
- Surface flashover occurred at 50 kV_{rms}

Full scale termination tested with Axicom bushing

CONCLUSIONS

• Full scale termination passes IEEE requirement for PD inception/extinction and BIL

- Full scale model too large for cryostat
- Initial testing in ambient air at room temperature
 - Tests were also made with the full scale model bagged with SF6.
 - SF6 has 3x strength of N2 so that this test is equivalent to 3 bar air
 - Provides intermediate test between 1 bar N2 and LN2
- Full scale model withstood 10+/10shots at 115 kV BIL
- PD inception reached 20 kV_{rms} with SF6 (or 3 bar nitrogen equivalent)
 - Exceeds IEEE requirement of 15.6 kV_{rms}
 - Background < 5pC</p>
- PD extinction same as inception



Partial Discharge vs Voltage on Phase 1 (straight)

CONCLUSIONS

- PD inception >33.1 kVrms
- PD <100 pC at 36.2 kVrms

voltages (<33 kV)

BIL test sequence conducted on each phase exceeds requirements.

	Phase tested in order of test	Insulation tested		
Before bend		P1-P2	P2-P3	P3-GND
	P1	5+/5-	0	0
	P2	5+/5-	5+/5-	0
	P3	0	5+/5-	5+/5-

Extended Test Program

	P1	5+/5-	0	0
After bend	P2	5-/3+ BD	5-/3+ no BD	0
	P3	0	5+/5-	5+/5-
	Total shots	38	38	20
Requirement		10+/10-	10+/10-	10+/10-

Triax HTS cable successfully passed the required high voltage tests.

- Required Testing
 - Passed HV withstand at operating voltage
 - Passed PD inception >15 kVrms
 - Passed BIL all three phases before bending
- Extended Testing
 - -Bend Cable 90°
 - Passed HV withstand
 - Passed PD inception >15 kVrms
 - Passed BIL on Phase 1 and 3
 - Failed BIL on 9th shot on phase 2 due to aging after basic IEEE requirement had been met.
 - Breakdown between phases 1 and 2
 - Phase 1-2 insulation experienced 38 shots at 110 kV
 - Bending particularly severe since terminations were attached
 - Still operated at rated voltage LN fills void created by breakdown
 - Dissection underway to locate failure. Analysis results fed back into design.

ORNL FY 2005 Performance

FY 2005 Plan

- Assemble and test full scale terminations for 3 kA 5-meter cable prototype.
- Fault current and bend testing of 3-meter triaxial cable.
- Finalize design of cryogenic system.
- Bend test of 5-meter triaxial cable.
- Splice test of 5-meter triaxial cable.

FY 2005 Performance

- Testing successfully completed at the end of May.
- Fault current and bend testing conducted at nkt
- Cable cryogenic system design is complete (Praxair).
- Testing successfully completed at the end of May.
- Splice design is completed. Test is planned.

ORNL FY 2005 Performance

FY 2005 Plan

- Continue operation of system with required PM and system management. Re-test dc-l_c of cables.
- Begin construction of triaxial cables for AEP project.
- Mechanical verification test of cryostat/cable assembly.

 Begin civil/electrical work at Bixby site.

FY 2005 Performance

- ✓ Over 30,000 hours of operation
- Critical current measurements show robust superconductor
- ✓ Unattended operation (since 6/01)
- Cables for AEP project have been started.
- ✓ 50-meter cryostat underwent pull testing through actual duct bank
 - Responding to issues such as pulling forces, vacuum insulation, and cable installation.

Design is complete.
 Construction to begin this fall.

ORNL FY 2005 Additional Tasks

FY 2005 Plan

- Tested 1- to 3-m cables to evaluate conductor architecture and minimize ac loss
- Participated in SPI Readiness Review

 Participated in HAZOP review of cryogenic system.

FY 2005 Performance

- Measured cables made with multiple HTS tape designs qualify design & performance.
- Mitigation plans have been prepared that address the issues identified by the Readiness Review Team.
- Issues that were identified are being addressed. No critical problems were identified.

Southwire/ORNL FY 2006 Plans Oct. 1, 2005 to Sept. 30, 2006

- SPI-1: 30-m Installation, Carrollton, GA
 - Disposition of system Southwire will continue operation.
- SPI-2: Bixby Substation, AEP, Columbus, OH
 - 1Q,FY2006 (Oct-Dec 2005)
 - Begin on-site installation of equipment.
 - Complete cable factory testing & ship to Bixby station.
 - Continued civil/electrical work at Bixby site.
 - Begin installation of cryostat and cable
 - 2Q,FY2006 (Jan-Mar 2006)
 - Complete cable & cryostat installation
 - Termination & splice assembly
 - Check-out and run-in of cryogenics system
 - 3Q,FY2006 (Apr-Jun 2006)
 - Finalize all installation items.
 - In-field testing completed
 - Operational control coordinated with AEP
 - Energize System
 - 4Q,FY2006 (Jul-Sept 2006) and FY2007
 - Operate system

Risk mitigation measures: HTS Cable

- Risk mitigation strategy is to address risks by incremental R&D steps on models and test cables:
 - Material tests on small scale samples and on scaled model components
 - System tests on full radial scale, short-length components (1-5 m HTS cables, full-scale terminations at ORNL).
 - System tests on full radial scale, moderate-length components (30m HTS cables at Southwire).
 - Multi-year utility demonstrations with cables of length 100's of meters
 - Cryostat pull tests conducted using actual cable ducts.
- Conduct tough, comprehensive design reviews
 - SPI Readiness Review (Webex) October 2004
 - SPI readiness review in June 2005.
 - Conducted HAZOP analysis of cryogenic system with Praxair in January 2005.

Risk mitigation measures: HTS Cable

- Risk mitigation strategy
 - Assembly:
 - Do stringent 300 K leak testing on individual components to minimize global leak rate while cold.
 - Extreme care in assembly so as not to introduce shorts or continuous current loops.
 - Cleanliness, material control to reduce out-gassing and contamination.
 - Testing:
 - Develop test plans up-front to ensure sufficient data for successful demonstration and for relevant standards development.
 - Proceed from lower risk to higher risk testing.
 - Key sensors are interlocked for operator warning and then automatic actions for component protection and continuity of power.

Research Integration - Partnerships

- Project is being conducted as a DOE SPI with equal cost sharing by Ultera and DOE. Ultera expertise includes:
 - -Wire and cable manufacturing,
 - -Established utility customer base,
 - -Design and installation of turn-key systems for utilities,
 - -Design and construction of copper rod mills world-wide,
 - -Design and construction of manufacturing plants,
 - Cold dielectric design developed by Southwire (successful 30-m demo)
 - -Warm dielectric design developed by nktc (successful 30-m demonstration in Copenhagen, Denmark)

And now:

 Design, installation & operation of superconducting cables for utility customers.

Research Integration - Partnerships

• FY 2005 progress is evidence of well functioning team.

- Triax cable research conducted on 5-m system jointly with Southwire/nkt at ORNL.
- Multiple short, 1- to 3-m cables fabricated by Southwire tested at ORNL and *nkt*.
- -PRAXAIR and AMSC brought on to the team.

 Ultera and ORNL exchange technical information and data regularly

- -Teleconferences & Videoconferences
- -Interactive web conferencing
- -personnel exchanges
- -30-m cable operation and testing at Southwire.
- -site visits and technical meetings

Research Integration - Expertise and Facilities

 Efficient use of equipment and personnel between ORNL/Ultera.

- Assembly of 30-m cables has involved a team of ORNL, Southwire and subcontracted technicians.
- Shared use of SW ac power supply, ORNL dc power supply, SW
 PD detector, fault current testing to over 56 kA in Denmark.
- Technical capability is being established in industry by subcontracting for subsystems and components.
 - Cryogenic system partnership was formed with Praxair (U.S. industry).
 - –Components for terminations were manufactured by U.S. industry resulting from competitive request for quotations.
 - Several key consultants have provided technical expertise and analysis.

Research Integration – Publications and Outreach

Presentations and publications during the year

- –Four technical papers were presented at the 2004 ASC and published in the IEEE Transactions on Applied Superconductivity, Vol. 15, No. 2, June 2005
- One paper was presented at the International Conference on Electricity Distribution (CIRED) in June 2005.
- -One paper will be presented at the Cryogenic Engineering Conference in August 2005 and will be submitted for publication in the, Advances in Cryogenic Engineering.

Web Sites

- -ORNL Superconductivity Web Site includes Annual Reports, Peer Review presentations and other project information
 - •www.ornl.gov/HTSC/htsc.html
- Southwire and Ultera Web Sites includes press releases and project information

www.southwire.com, www.ultera.net, www.supercables.com

