NCSX Research Plan FY09 – FY11

M.C. Zarnstorff, NCSX Physics Head

For Princeton Plasma Physics Laboratory & Oak Ridge National Laboratory

> DOE/PSO Briefing 9 September 2006

Overview

- MIE project will supply core capability to confine plasma with stellarator fields
- As with previous experiments, this core capability will be augmented for fusion research
 - diagnostics
 - heating systems
 - full control system
 - full power supply system
- NCSX Mission and Goals for operating phases 2-4 are unchanged
- Plan accomplishes High Priority Goals through phase 4 by end of FY11 with alternate year operation, within budgets.

NCSX Research Mission - Unchanged

Acquire the physics data needed to assess the attractiveness of compact stellarators; advance understanding of 3D fusion science. (FESAC-99 Goal)

Understand...

- Pressure limits and limiting mechanisms in a strongly shaped 3D plasma
- Effect of 3D magnetic fields on disruptions
- Reduction of neoclassical transport by quasi-symmetric design.
- Confinement scaling with quasi-symmetry; transport barrier formation and reduction of turbulent transport by flow shear control with 3D field.
- Equilibrium islands and tearing-modes, including effects of magnetic shear, seed perturbations and ion-kinetics
- Effect of stochasticity and 3D shaping on the SOL plasma and power and particle exhaust methods. Compatibility with good core confinement.
- Energetic-ion stability and confinement in 3D magnetic fields

Demonstrate...

- Conditions for high- β disruption-free operation
- High pressure, good confinement, compatible with steady state

Current Plan Accomplishes Phase 3&4 in FY-11

- Change in 1st Plasma date due to OFES rebaselining in 2005
- Change in 2006 operating plan due to alternating-year op schedule

Research Goals - Unchanged

- 2. Magnetic Configuration Mapping (FY09)
 - Document vacuum flux surface characteristics
 - Document control of vacuum field characteristics using coil current
- 3/4. Initial Heating Experiments (FY11)

Merged goals from previous phases 3 & 4 (1.5MW and 3MW phases)

- Explore and establish plasma operating space
- Characterize global confinement, stability, and operating limits, and their dependence on plasma 3D shape
- Investigate local ion, electron, and momentrum transport and effects of quasisymmetry
- Test plasma stability at moderate β , dependence on 3D shape
- Characterize SOL properties for different 3D geometries, prepare for the first divertor design.
- Explore ability to generate transport barriers and enhanced confinement regimes.

Plan uses FY09 & FY10 Funding to Operate and Prepare for FY11 Run

	FY09	FY10	FY11	
Research (incl. diagnostics)	6.0	6.5	19.6	
Facility (incl. upgrades)	11.7	16.0	22.6	
Total	17.7	22.5	42.2	As spent \$

FY09 and FY10 funding covers

- Operation and Research for Phase 2: Magnetic Configuration studies
- Design and implementation of upgrades (diagnostic and facility) to accomplish phase 3&4 goals in FY11
- Research priorities will be reviewed at upcoming meetings
 - PAC, 9-10 November 2006
 - Research Forum, 7-8 December 2006
- Details of research goals and upgrade plans may evolve in consequence
- Expect ~25% of the diagnostic upgrades will be funded via independently reviewed proposals for collaboration
 - First call in 2008 for FY09 funding

Diagnostic Upgrades Planned and Budgeted

During FY09 and FY10, will add diagnostics for:

- n_e , T_e , T_i , v_{ϕ} , B_p profiles
- Magnetic measurements of equilibrium and MHD activity
- Radiated power, impurity content (via spectrometry)
- Scrape off layer density and temperature, power losses to wall.

Diagnostic upgrading will continue throughout the Research Program

Equipment Upgrades Planned and Budgeted

Major elements in FY09 & FY10 :

- Data acquisition and control
 - acquisition of diagnostics, data infrastructure
 - diagnostic control; initial plasma feedback control
- Heating systems
 - NBI refurbishment and installation
 - ECH heating may be possible via collaboration, under evaluation
- Plasma facing components and NB armor
 - partial liner inside vacuum vessel
 - wall conditioning & boronization
- Power systems
 - Modular coils and TF powered from D-site, PF coils from C-site
 - Merged C/D-site interlocks and controls
 - Power for diagnostics

Equipment upgrading will continue throughout the Research Program

FY11 Capability Exceeds CD2 plan for Key Systems

	CD2 Plan	Current Plan for FY11
Neutral beams	One beam refurbished, Not installed	Two beams refurbished and installed
Magnet power supplies	6 D-site circuits	4 D-site circuits, 5 C-site circuits: all coils powered
Central solenoid coils	6 coils (PF1-3)	6 coils (PF1 – 3)
Vacuum systems	2 turbo-pumps	4 turbo-pumps
Cryostat cooling system	Complete: 15 min rep- rate	Complete: 15 min rep-rate
Central Instrumentation and Controls	Ready for phase 3	Ready for phase 3 and 4
VV Bakeout	150 C	150C
Trim coils	18 trim coils installed	MIE capability: 2 trim coils for n=1 modes (sufficient for 3/4 goals)

Summary

- NCSX Mission and Research Goals (by operating phase) have not changed
- With alternating-year operation schedule, Initial Heating phases 3&4 will be in FY11
- MIE project will supply core stellarator confinement facility
- Upgrades are planned and budgeted for FY09 & FY10 to accomplish Research Goals
 - Diagnostics
 - Heating systems
 - Control and data acquisition
 - Plasma facing components
 - Power systems

