

Twisted Racetrack Coil Final Design Review

P. Fogarty, K. Freudenberg, T. Hargrove, G. Lovett, B. Nelson, P. Goranson, D. Williamson October 15, 2004

Charge to Reviewers

- Have the TRC requirements been appropriately defined? Have the means to verify that the requirements have been met been identified?
- Has the design been adequately defined for component fabrication and coil assembly?
- Is the assembly procedure been adequately defined in the MIT/QA plan and supporting procedures? Does the assembly procedure appear reasonable and consistent with the coil design?
- Does the assembly procedure and metrology plan (including measurement and compensation) appear suitable to achieve the tight tolerance requirement for control of the current center?
- Do the planned safety controls appear adequate?
- Is the test plan adequately defined? Have instrumentation requirements for the TRC been defined consistent with the test plan?

Presentation Outline

• Introduction

NCSY

- Requirements
- Design Description
- Performance
- Fabrication (J. Chrzanowski)
- Test Plan (B. Nelson)
- Schedule (J. Chrzanowski)

Purpose of TRC is to verify MC components

The twisted racetrack coil is the 3rd demo coil, first to demonstrate a prototypical winding assembly

TRC coil shape is derived from modular coils

TRC addresses MC functional requirements

Modular Coil Requirements:

The winding forms provide an accurate means of positioning the conductor during the winding and vacuum-pressure impregnation (VPI) process

Machined surfaces within 0.020-in of CAD profile

Toroidal, poloidal electrical segmentation

Access for NBI, ICRH, diagnostics, personnel

Support vessel, interface with PF/TF coil structure

Windings provide the basic QA field configuration

Field up to 2-T for 1-s with 15-min rep rate

Winding center accurate to +/- 0.060-in (1.5-mm)

Independent control of each coil type for flexibility

Feedback for coil protection system

Design for 150 cool-down cycles, 130,000 pulses over >10 years of operation

Twisted Racetrack Coil

Winding form was fabricated to same specification as MCWF

TRC can operate at ³/₄ full current, same temperature and rep rate

Winding, measurement techniques identical to modular coil plan

<u>}</u> \

Voltage taps and flux loops can be used to demonstrate a system

Coil Assembly

Winding Pack

Pro/E Assembly Model Tree

Winding Form Modifications

Leads slot widened

Welded studs and plate

Terminal Block Start

NCSX

Copper Cladding

Lead Block Start

Matl: G11-CR laminate

NCSX

Qty: 2 per side + additional fill blocks for TRC slot (SE1406-022 thru -024)

Free of burrs, sharp edges

Slot widens for extra turn insulation

Ground Insulation

NCSX

The total thickness of 0.0445-in is composed of three layers:

- 1) butt-lapped layer of 0.007-in S2 glass,
- 2) half-lapped layer of 2-in wide x 0.007-in S2 glass and 1.5-in wide x 0.0065-in adhesive Kapton tape
- 3) butt-lapped layer of the same composite as layer #2

14

Winding Start

Winding Pack Shims

Material - The shim material is S2 glass cloth with adhesive backing

NCSX

Size and Weight – shims are cut from xx-in wide x yy-in thick glass tape

Winding Finish

Chill Plates and Tubing/Fringe

Leads Closure, VPI, and Clamps

Electrical Power Connection

Instrumentation

Fiber optic strain gage -Three each at each end of the coil, located at the tip of the tee web and the inside/outside surface of the tee base. Two additional strain gages to be located near and opposite the coil leads.

NCSX

Type-E thermocouple - Within a coil plane, opposite the leads region, thermocouples shall be located in the middle of each winding pack and spaced vertically between the layers.

Flux loop - Wires shall be located at the outer corner, plasma side of each winding pack. Terminations routed along the lead block to the base of the winding form.

Electrical Parameters

I	CCY

		Flat	Twisted	Prototype	Production	Production	Production
Calculated quantity		Racetrack	Racetrack	(Coil type C)	Coil type A	Coil type B	Coil type C
Number of elec turns per winding pack		14	9	9	10	10	9
Number of electrical turns per coil		28	18	18	20	20	18
Number of physical turns per electrical							
turn		1	4	4	4	4	4
Conductor width, with serve	in	0.625	0.350	0.350	0.350	0.350	0.350
Conductor height, with serve	in	0.500	0.391	0.391	0.391	0.391	0.391
packing fraction		0.78	0.78	0.78	0.78	0.78	0.78
Winding resistance at RT	ohms	1.366E-02	7.201E-02	1.506E-02	1.848E-02	1.802E-02	1.506E-02
Winding resistance at 120K	ohms	1.772E-03	2.111E-02	5.136E-02	6.304E-02	6.146E-02	5.136E-02
Winding resistance at 80K	ohms	7.835E-04	1.081E-02	6.662E-03	8.177E-03	7.972E-03	6.662E-03
Inductance - windings only	Henries	6.63E-04	7.91E-03	7.90E-03	1.240E-02	9.230E-03	7.900E-03
Time constant - windings only, RT	seconds	4.85E-02	1.10E-01	5.25E-01	6.71E-01	5.12E-01	5.25E-01
Time constant - windings only, 120K	seconds	3.74E-01	3.75E-01	1.54E-01	1.97E-01	1.50E-01	1.54E-01
Time constant - windings only, 80K	seconds	8.46E-01	7.32E-01	1.19E+00	1.52E+00	1.16E+00	1.19E+00
Max operating current per elec turn	Amps	N/A	N/A	N/A	40908	41561	40598
Maximum test current	Amps						

Electromagnetic Analysis

EM Force Comparison

	Units	Sum Fx	Sum Fy	Sum Fz
ANSYS	N	-144,576	-124,400	453,894
MAGFOR	N	-109,806	-112,042	435,450

Twisted Racetrack: Linear Results for 31.5 kamps/turn

Model includes:

- Clamp Preload = 125 lbs.
- Thermal shrinkage of 0.04% ($400\mu\varepsilon$) to account only for the cool-down to cryogenic.
- Magnetic nodal force loading for ³/₄ of the max current (42 kAmps) used for the real coils.

K. Freudenberg

Model and mesh with new clamp that attaches to the base of the tee.

Deflection

Stress Intensity for twisted racetrack coil assembly

Stress Intensity of Winding Pack

Max Principle Strain

Twisted Racetrack Summary						
	Current (kAmps)	Max Stress Tee (ksi)	Max Stress winding (ksi)	Max principle strain (in/in)		
Linear	42	44.7	18.9	0.002996		
Linear	33	21.8	11.1	0.001771		
non-linear	42	73.8	13.3	0.002987		
non-linear	33	41.5	7.7	0.001656		

Real Coils [2T high Beta loading applied.]						
Coil	Winding Stress (ksi)	Shell/Tee Stress (ksii)	Max Principal Strain (in/in)	Gap [Laterial] (mm)		
Mechanica A	10.5	24.7	0.0011	0.0889		
Mechanica B	11.5	39.0	0.00012	0.5842		
Mechanica C	12.9	32.0	0.0015	0.8128		
Ansys A	11.5	33.5	0.0013	0.2		
Ansys B	9.6	36.1	0.001	0.5		
Ansys C	11.0	32.9	0.0012	0.6		

Coil Cooling

NCSX

- Lumped capacitance calc indicates 2-sec pulse at 32-kA/turn will heat WP to 125-K
- Cool-down time slightly longer than 15-min, ratchets to 90-137K SS
- Minimal rise in LN2 temp (6.7-C)

	Mo			
	Α	В	С	TRC
No. cooling circuits / coil	8	8	8	8
Coil one-turn length (in)	291	283	263	144
Circuit length w/o bends (in)	146	142	132	72
Depth of winding pack (in)	4.5	4.5	4.0	4.0
No. switchbacks / circuit	49	47	44	24
Total circuit length (in)	364	354	307	168
Total circuit length (ft)	30	29	26	14
No. 90-deg bends	97	94	88	48
Line diameter (in)	0.25	0.25	0.25	0.25

P. Goranson

Conclusion

- TRC design complete except for chill plate developed shapes, tube and fringe revised layout
- EM and structural analysis of leads needs to be completed

Next topics -

- Fabrication (J. Chrzanowski)
- Testing (B. Nelson)
- Schedule

ANSYS mesh of winding block assembly