WBS 14 Modular Coils

NCev

D. Williamson – Design and Analysis P. Heitzenroeder –Winding Form Fabrication and R&D J. Chrzanowski – Modular Coil Fabrication and R&D D. Williamson – Cost / Schedule and Summary

for the NCSX Team

NCSX Performance Baseline Review November 18-20, 2003 PPPL

Introduction

- Modular coil system has improved significantly since CDR:
 - Winding center changed to improve physics, engr parameters
 - Introduced poloidal break; developed details for leads, cooling
 - Performed winding, potting, and properties tests on conductor
 - Engaged multiple vendors in winding form development
 - Developed design of winding fixtures and autoclave
 - Requirements, interfaces, and design basis established
- We are ready to proceed with final design

NCev

Presentation Outline

Modular Coil Design, Analysis, and Implementation

- System Requirements
- Design Description
- Analysis
- Winding Form Manufacturing (P. Heitzenroeder)
- Winding Facility and R&D (J. Chrzanowski)
- Cost and Schedule
- Summary

NCCY

Modular coil WBS includes:

- Winding forms
- Windings and assembly
- Coil instrumentation
- Winding facility

Requirements

- The winding forms provide an accurate means of positioning the conductor during the winding and vacuum-pressure impregnation (VPI) process
 - Machined surfaces within 0.020-in (0.5-mm) of CAD profile
 - Segmented for assembly and to meet electrical requirements
 - Provide access for NBI, ICRH, diagnostics, personnel
 - Support vacuum vessel, interface with PF/TF coil structure
- The coil windings provide the basic quasi-axisymmetric magnetic configuration
 - Field up to 2-T for 1-s with 15 min rep rate
 - Winding center accurate to +/- 0.060-in (1.5-mm)
 - Independent control of each coil type for flexibility
 - Instrumentation to provide feedback for coil protection system

Requirements (cont'd)

 Winding fixtures and tooling are required to position and support the conductor during fabrication

 Fixtures interface with three coil shapes, provide access for conductor spools and tooling

 Efficient and accurate

 Autoclave is required for "bag mold" vacuum pressure impregnation (VPI) process

 Capable of <1-torr to 15-psig, heating to 135-C in <24-hrs

Ref: J. Chzranowski

CO

Modular Coil Assembly

 Integral shell composed of 18 modular coil assemblies

- Three field periods, 6 coils per period, 3 coil types
- Shell thickness = 1.5-in, can vary to meet stress requirements
- Total weight = 125,000lb
- Each modular coil: — 1,900-ft of conductor
 - 48 coil clamps
 - 200 fasteners

Interior View of Structure

Wide Angle View at Coil Type A-A

Wide Angle View at Coil Type C-C

Modular Coil Types

NCSX

Coil Configuration

 Three field periods with 6 coils per period, for a total of 18 coils

 Shape developed through a physics optimization process that emphasizes plasma properties, geometry constraints, and current density limitations

Coilset # m50_e04

NCCI

Coil Geometry

 Min bend radius at winding pack surface is 2.5-in, 2.7-in, and 3.1-in for coils A, B, and C respectively

Case m50_e04 Coil Parameters									
Coil #	Α'		Α		В		С		C'
Coil			291		283		263		
Length (in)			201		200		200		
Min Coil-Coil		76		63		61		6.8	
Dist (in)		7.0		0.5		0.1		0.0	
Max Coil-Coil		35.0		36 1		30.7		26.6	
Dist (in)		35.0		JU. 4		50.7		20.0	
Min Rad of			12		18		13		
Curvature (in)			4.2		т .0		- .0		
Min Coil-Plas			88		<u>8</u> 1		00		
Dist (in)			0.0		0.1		9.0		
Max Coil-			28 5		22.6		20.2		
Plas Dist (in)			20.5		22.0		20.2		

NCSX

Cross-Section Development

 Coil "twist" has been developed through an iterative process

NCCY

 Resulting cross-section is normal to winding surface along most of coil length, but varies inboard to accommodate adjacent coils

 Some regions require taper in base of tee to avoid interference

 A study of finite build coil fields indicates twist adjustments are acceptable

Winding Pack Configuration

Parameters:

NCey

- Coil Envelope = $2 \times 1.675 \times 4.671$ -in
- Current / Coil = up to 831-kA-turns
- Number of Turns = 20 (A, B) and 18 (C)
- Max Current / Turn = 41.6 kA
- Conductor Size = .391 x .35 in (9.9 x 8.9 mm)
- Cu Current Density = 15.1-kA/cm2 (Max)
- Conductor operating temp. range 85K-130K
- Operating voltage = 2-kV
- Layout changed from CDR concept,

a double-layer pancake, to 4-inhand layer wound design

- Reduced keystoning due to smaller conductor
- Low turn to turn voltage
- Less time estimated to wind

Winding Pack Configuration (cont'd)

NCSX

Conductor Insulation

 Conductor insulated with 0.004-in nylon serve and two half-lapped layers of 0.004-in glass cloth (0.6-kV)

Ground wrap consists of 0.030-in glass cloth and 0.008-in Kapton (2.3-kV)

NCSX

Winding Accuracy

- Winding position is continuously monitored and adjusted to avoid tolerance stack-up
- Tolerance issues:

NCev

- Machined surfaces of winding form are accurate to +/- 0.010-in (0.5-mm)
- Conductor w/o insulation has a dimensional tolerance of +/- 0.010-in (0.5mm)
- Geometry requires up to 0.036-in (.91-mm) per layer allowance for conductor keystoning
- Current center can be adjusted by use of shims between layers

Coil Cooling

 A thin chill plate is located on both sides of each winding pack to remove joule heating between plasma discharges

CC

 Chill plate is cut in flat patterns from 0.040-in thick copper and formed around winding pack

• Chill plate is segmented and electrically isolated from winding form

 Outer plate is cooled by liquid nitrogen in tube bonded to surface

 Nitrogen enters the chill plate circuit at the bottom and exits near the top of each coil

VPI Bag Mold Feature

• VPI mold is composed of epoxy impregnated felt and silicon rubber tape

 Located between winding pack and clamps

 Sealed by pressing tube into continuous half-round or v-groove at base of tee

NCCY

Winding Pack Clamps

 Winding packs are clamped by discrete bracket assemblies, spaced approximately every 6inches

 Clamp is attached by studs at base of tee and tapped holes in web of tee, shimmed to fit winding pack

• Spring washers provide compliance, allow clamp to preload winding pack to structure

NCey

Poloidal Insulating Break

 Poloidal break is required to prevent persistent eddy currents during operation

 Fabrication approach is to saw-cut casting, insulate and bolt prior to final machining of the tee region

 Tee web connection using double insulated pin or bolt may also be required

NCCY

Coil Leads

Leads are located in "straight" outboard regions that minimize field errors
 Continuous conductors extend through shell wall to junction block on exterior surface
 Like conductors from each winding pack are connected in series to maintain current center
 A flexible co-axial cable connects block to power supply buswork outside cryostat

Up / Down Symmetry of Leads

Cable Connection at Shell Exterior

Plasma Side of Winding Pack

NCS

Coil Instrumentation

Preliminary list of temperature, voltage, strain, and flow sensors has been developed
Gages will have "back-to-back" elements that reduce EM noise during operation
Diagnostic magnetic field sensor loops will also be co-wound with the modular coils

Modular Coil Instrumentation							
Instrumentation Total Number Commen							
Voltage Tap	36	2 per coil					
Strain Gages	72	4 per coil					
Flow Sensor	36	2 per coil					
RTD /	70	4 no r o o il					
Thermocouples	12	4 per coll					

NCev

Coil Services

• Coil services include buswork and cooling lines inside the cryostat

Buswork:

- commercial, anti-kick cables modified for cryogenic use
- gas feed for cooling
- all coils (modular, PF, TF, Trim) will use the same cable desig
- prototype cable to be tested during racetrack coil testing

Cooling lines:

- consists of manifolds and lines inside cryostat
- -assume stainless steel manifolds with pigtails to each circuit
- pigtails made from teflon hose, ala C-Mod experiment at MIT
- assume each cooling circuit has valve and pressure gage for balancing

Design Evaluation

- Preliminary design analysis has been completed for
 - Coil and lead field errors
 - Eddy currents in modular coil structure
 - Thermal and thermo-hydraulic response
 - Electromagnetic field and forces
 - Stress due to thermal and electromagnetic loads
- Structural analysis models:
 - Global deflection and stress in the winding forms
 - Nonlinear behavior of the windings due to thermal and EM loads
 - Deflection and stress in the clamps (racetrack coil)
- Detailed analysis, checking to be completed during final design

NCCI

Coil Position Field Errors

Analysis of magnetic islands due to random errors in position of coil winding center
 Displacement error types are 1) Fourier series, 2) short wavelet, and 3) broad displacement
 Results show strong effect where coil-plasma separation <30-cm, however correctable with trim coils

NCS

Field Error due to Leads

 Analysis performed with VACISLD code to determine effect of large lead currents on magnetic islands

 Poloidal location of leads was varied from outboard midplane to less practical inboard positions

Best position appears to be 80-90% of poloidal length, near outboard midplane

Eddy Current Evaluation

 Analysis performed with SPARK to determine eddy currents due to varying modular coil currents

 Looked at insulating break options (toroidal and poloidal), as well as segmentation of copper chill plates

Results show longest time constant is <20-ms with one poloidal break, toroidal breaks shown</p>

• Field period assembly joint (C-C) does not need to be insulated

NCC

Thermal Analysis

- 2D transient analysis of cooling after adiabatic heating to 130-K during pulse
- Initial temp = 85-K, cooling by conduction to trace-cooled copper chill plates, some convection

Analysis shows cooldown in 15-min, equilibrium after ~10 cycles

Electromagnetic Loads Analysis

 Two independent calculations have been performed using ANSYS, MAGFOR codes

NCCV

 Seven reference scenarios examined at time step with maximum modular coil current

 Scan of all possible coil currents for a more severe fault load condition is in progress

Maximum Current / Coil for Reference Scenarios (kA)									
Circuit	Coil Set	0.5-T	Field	1.7-T	1.7-T	2-T	1.2-T	320-kA	
		1st Plasma	Mapping	Ohmic	High Beta	High Beta	L. Pulse	Ohmic	
1	TF	13	13	43	45	53	30	26	
2	PF1	673	0	1479	1120	1340	1191	1632	
	PF2	673	0	1479	1120	1340	1191	1632	
3	PF3	673	0	1286	998	1208	980	1082	
4	PF4	749	734	374	416	287	313	1191	
5	PF5	0	0	204	209	82	148	128	
6	PF6	32	13	104	101	115	72	73	
7	M1	224	224	763	763	818	539	695	
8	M2	209	209	710	710	831	501	707	
9	M3	188	188	638	638	731	451	621	
	PLAS	35	0	120	178	210	126	321	

Magnetic Field Distribution

Maximum magnetic flux density at windings is 4.7-T for 2-T reference scenario
 ANSYS, MAGFOR results differ by ~4% due to mesh and integration differences

Force Distribution

Force distribution indicates large centering force up to 317-kip (1.4-MN) per coil

• Net vertical load up to 122-kip (.5-MN)

Net EM Force on Modular Coils										
Coil	Field/Force	0.5-T	Field	1.7-T	1.7-T	2-T	1.2-T	320-kA		
	Component	1st Plasma	Mapping	Ohmic	High Beta	High Beta	L. Pulse	Ohmic		
	Max Field at Coil (T)	1.2	0.2	4.2	4.2	4.9	2.9	4.2		
M1	Net Radial Load (kip)	13	1	152	152	200	76	147		
	Net Vert Load (kip)	0.5	0	9	9	7	5	7		
MO	Net Radial Load (kip)	20	1	228	228	317	113	230		
IVIZ	Net Vert Load (kip)	7	0	84	84	106	42	79		
МЗ	Net Radial Load (kip)	5	0	57	57	86	29	62		
mo	Net Vert Load (kip)	8	0	95	95	122	1.2-T L. Pulse 2.9 76 5 113 42 29 47	89		

Force Details

 Forces have been resolved into "radial" (away from plasma) and "lateral" (toward tee web) directions

 In general, radial load is toward structure and lateral load is countered by equal force in other wp

Sharp bends can result in lateral force away from tee; reacted by clamps and beam behavior of coil

Maximum Running Load on Modular Coils (lb/in)									
Coil	Field/Force	0.5-T	Field	1.7-T	1.7-T	2-T	1.2-T	320-kA	
COII	Component	1st Plasma	Mapping	Ohmic	High Beta	High Beta	L. Pulse	Ohmic	
N44	Rad Load (lb/in)	200	8	2272	2279	2869	1134	2053	
	Lat Load (lb/in)	434	17	4995	4997	2869 1134 5831 2490 55591 2031	4163		
MO	Rad Load (lb/in)	351	14	4077	4076	5591	2031	4050	
IVIZ	Lat Load (lb/in)	430	17	4982	4983	6982	2483	5059	
M2	Rad Load (lb/in)	233	9	2698	2698	3540	1344	2615	
WI3	Lat Load (lb/in)	418	17	4830	4830	6405	1.2-T L. Pulse 1134 2490 2031 2483 1344 2407	4552	

NCCY

Global Deflection and Stress

 CDR analysis model has been updated to investigate deflection / stress in the modular coil structure

Assumption: 2-T EM loads, coil winding is continuously supported by shell structure

Results indicate max displacement of 0.038-in, peak Von Mises stress of 26-ksi (181-MPa) in steel

Stress in Shell And Windings

Winding Thermal Stress

- Relative strain between winding pack and winding form due to:
 - Cure shrinkage (~ 0.04%)
 - Cooldown to LN2 temperature (~0.04%)
- Winding moves away from coil form and gaps may open in localized regions
- Provides room for coil expansion during current pulse - 0.04% expansion relative to winding form

NCCV

Thermal Stress Model

- Non-linear model of windings on fixed tee has been developed using Pro/MECHANICA
- Contact surfaces between winding and tee allow winding to separate from and slide along tee
- Pseudo-clamps (48) are represented by low modulus material with directional restraints
- Properties of block simulate clamp spring force (26,000 lb/in) and preload (~1000 lb)

Displacement Due To Cooldown

- Relative displacement due to cooldown is approximately 0.040-in (1mm)
- Displacement can be tailored by placement of clamps

NCCY

Combined EM And Thermal Loads

- Displacement due to max loads and cooldown is approximately 0.080-in (2-mm)
- For initial strain of 0.08%, stress ~ 16 ksi (S.F. = 1.3)
- For initial strain of 0.0%, stress ~ 10 ksi (S.F.

Modular Coil Design/Analysis Summary

Preliminary design concept meets performance requirements

- Accurately built 18 coil, 3 period modular coil set with integrated structure
- 0.5-T, 0.3-s room temperature operation for first plasma, field-line mapping
- 2-T, 1-s operation at cryogenic temperatures
- Low permeability material, segmentation to limit eddy currents
- Access for diagnostics, heating, vacuum pumping
- Interface with other stellarator core components
- Analysis shows design to be adequate for reference operating scenarios
 - Coil cools from 40-deg temperature rise after pulse in 15-min with no ratcheting
 - Deflection of coil structure due to EM loads is <0.04-in, stress minimal (FS=2)
 - Winding stress depends on properties, initial strain due to cure and thermal shrinkage
 - Initial analysis shows stress up to 16-ksi, FS=1.3
 - Further non-linear analysis is planned during final design

NCS