3D edge issues in tokamaks

Presented by: T. E. EVANS

General Atomics, San Diego, CA

With contributions by:

R. K. W. Roeder, *Cornell University, Ithaca, NY*

J. A. Carter, University of North Carolina, Chapel Hill, NC

> **B. I. Rapoport,** Oxford University, Oxford, UK

M. E. Fenstermacher and **C. J. Lasnier** *Lawrence Livermore National Laboratory, Livermore, CA*

Stellarator Theory Teleconference 12 August 2004

Why are 3D edge issues important in tokamaks?

- Edge confinement and stability is known to be strongly tied to magnetic geometry (topology?)
 - L-H transition (position, shape, up-down symmetry, etc.)
 - QH-mode, VH-mode, etc. (shape, co-versus counter- NBI)
 - ELM frequency and amplitude (triangulatiy, squareness, etc.)
 - Locked modes, Quasi-Stationary Modes (QSMs), Resistive Wall Modes (RWMs), MARFEs, etc.
- Optimized boundary control (power and particle exhaust, impurity production, etc.) requires good alignment of PFCs with magnetic topology.
- Toroidal magnetic topology is very sensitive to resonant perturbations.

Nominally axisymmetric tokamaks have many sources of non-axisymmetric magnetic perturbations

- External sources include:
 - Field-errors due to confinement, heating, shaping and correction coils
 - MHD control coils (RWM) and boundary layer coils
- Plasma sources include:
 - Plasma (MHD) instabilities
 - -edge current filaments

Internal (I-) and external (C-) coils are used for MHD control experiments in DIII-D

 Various I-coil polodial and toroidal mode number configurations, toroidal phases and parities used for RWM and ELM control.

 The C-coil (not shown) is used on almost every discharge to correct field-errors that cause locked modes and Quasi-Stationary Modes (QSMs).

even up-down parity

tee-04stt-4/25

Hamilton-Jacobi form of magnetic field is used for the perturbation analysis

 Represent magnetic field lines in actionangle coordiantes:

$$\frac{d\theta}{d\phi} = \frac{\partial H(\psi, \theta)}{\partial \psi}$$
 and $\frac{d\psi}{d\phi} = -\frac{\partial H(\psi, \theta)}{\partial \theta}$

$$H(\psi,\theta) = H_0(\psi) + \sum_{n} \varepsilon_n H_n(\psi,\theta)$$

the toroidal angle φ is a time-like variable and ϵ is the perturbation amplitude.

- Standard twist map methods used to study the properties of this conservative Hamiltonian system:
 - Numerical twist maps based on field line integration codes - TRIP_MAP and TRIP3D_MAP

Poloidal cross section of a toroidal magnetic equilibrium in a tokamak

Non-axisymmetric magnetic perturbations produce separatrix splitting resulting in the formation of homoclinic tangles

Stable and unstable manifolds intersect to produce both resonant and nonresonant homoclinic tangles.

resonant homoclinic tangle (illustration)

Small random displacements in all the tokamak coils can create stochasticity

- Invariant manifolds around resonant islands (red) separate classes of field line trajectories.
 - Field lines move toward (away) from hyperbolic points along stable (unstable) manifolds.

A complex web of tangle intersections near χ -points produces local island stochasticity

- Field lines in tangles exhibit chaotic trajectories due to:
 - Stable-unstable manifold intersections produced by
 - Homoclinic tangles from single or opposing hyperbolic (χ) points.
- Stable-stable and unstable-unstable manifold intersections are forbidden

Tangle intersections between neighboring islands produce global stochasticity

 Island-to-island intersections result in large scale non-diffusive field line transport

Homoclinic tangles appear in the DIII-D separatrix at very low perturbation amplitudes

tee-04stt-10/25

Complex webs of resonant homoclinic tangles are responsible for the onset of global stochasticity in the edge of the DIII-D tokamak

¹T. E. Evans, R. A. Moyer, P. Monat, Phys. Plasmas **9**, 4957 (2002)

tee-04stt-11/25

Large regions of the edge plasma are connected to material surfaces by flux exchange through resonant and non-resonant tangle intersections

 Following part of a lobe that intersects the upper divertor backwards several iterations shows how field lines mix and escape from the edge plasma.

Heat and particles follow stochastic field lines that escape through non-resonant tangles

- Heat and particles from deep inside the plasma escape through non-resonant homoclinic tangles and strike material surfaces in the divertors or other protruding structures²
- Patterns created by the escaping heat and particle flux can be related to topology of the nonresonant tangles

²R. K. W. Roeder, B. I. Rapoport, T. E. Evans, Phys. Plasmas **10**, 3796 (2003)

tee-04stt-13/25

Non-resonant tangles form spiral-like patterns on toroidal surfaces such as divertor targets

- Non-resonant tangles create a unique signatures on plasma facing surfaces:
 - spiraling magnetic footprints on the divertor target plates³
 - Toroidally localized hot spots on protruding baffle structures
- At the location of the divertor plates the spiral due to the Ccoil is ~1 cm.

³Reminiscent of spirals in N. Pomphery, A. Reiman, Phys. Fluids B **4**, 938 (1992)

The topology of non-resonant tangles is sensitive to changes in the up-down equilibrium symmetry

- Tangles protrude near both χ-points in balanced (dRsep ~ 0) equilibria
 - Dominate χ -point has a double lobe structure
 - Secondary χ-point lobes shadow lobes from the primary χpoint
- The exact structure of the tangles is sensitive to shape parameters⁴ like up-down balance (dRsep), triangularity, etc and perturbation amplitude.

⁴T. E. Evans, R. K. W. Roeder, J. A. Carter, B. I. Rapoport, Contrib. Plasmas Phys. **44**, 235 (2004)

The divertor heat flux changes during magnetic perturbations from the I-coil

The 4.4 kA I-coil pulse introduces a 46 gauss magnetic perturbation at the plasma surface.

The peak in the divertor heat flux slowly splits during I-coil perturbation

- Split heat flux peaks are consistent with divertor plate homoclinic tangle intersections
 - Correlated with I-coil pulse
 - Larger than modeling predicts and time dependent
 - Plasma response (evolution/amplification) is important

Plasma emissions in the lower divertor also splits during I-coil perturbation

 Tangentially viewing camera looking at plasma emissions in the lower divertor sees a splitting of the strike point recycling when the I-coil is pulsed.

tee-04stt-18/25

Magnetic perturbations from plasma instabilities also drive homoclinic tangles

 Currents in the scrape-off layer sometimes produce perturbations larger than those due to external coils.

tee-04stt-19/25

Quasi-stationary modes produce rotating, time dependent, magnetic perturbations

 Rotating magnetic perturbations from Quasi-Stationary Modes (QSM) sweep divertor heat flux profiles past IRTVs viewing the lower divertor:

Toroidal mode structure is resolved

tee-04stt-20/25

Rotating QSMs produce spiral-like signatures in the divertor heat flux

 The distance between the heat flux peaks increases as the QSM rotates past the IRTV

- Consistent with a spiral structure induce by a homoclinic tangle

An n=1 toroidal mode structure is observed as a QSM rotates past the IRTV

 As the QSM rotates past the IRTV with relatively constant amplitude an n=1 toroidal mode structure is observed

The mode structure appears to be obscured by a change in the mode amplitude

 Other toroidal modes may also be present but are difficult to resolve with the IRTV data.

Additional comments and observations

- Experimental signatures of homoclinic tangles are also seen during:
 - Edge Localized Modes (ELMs)
 - toroidal asymmetries in scrape-off layer currents seen in DIII-D
 - Split, spiraling heat flux footprints seen in ASDEX-U
 - Resistive Wall Modes (RWMs) in DIII-D
 - Disruption halo currents in DIII-D
- With increasing tokamak performance levels (higher plasma pressure and confinement) MHD instabilities tend to be more severe implying:
 - A greater need for external control coils
 - Additional complexity in the edge plasma
- Dynamical systems analysis provides a starting point for understanding the topology of the edge plasma (and interactions with material surfaces) but self-consistent plasma models are needed.

Conclusions

- Modeling results show that two types of homoclinic tangles are involved in determining the edge magnetic topology of poloidally diverted tokamaks:
 - resonant tangles surrounding helical magnetic islands result in global stochatic flux exchange across the plasma edge
 - non-resonant tangles establish escape trajectory pathways to material surfaces
- Experimental measurements demonstrate that tangle-like structures turn on and off with external perturbations
 - Calculations of externally driven spirals and splitting widths in the divertors are too small to match the experimental data
- Time dependent tangle signatures are seen during plasma generated MHD activity
 - Toroidal and radial structure match those calculated with the numerical model
- Plasma effects need to be included in the model and comparisons with experimental data are required

