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Why are 3D edge issues
important in tokamaks?

® Edge confinement and stability is known to be
strongly tied to magnetic geometry (topology?)
— L-H transition (position, shape, up-down symmetry, etc.)
— QH-mode, VH-mode, etc. (shape, co- versus counter- NBI)
— ELM frequency and amplitude (triangulatiy, squareness, etc.)
— Locked modes, Quasi-Stationary Modes (QSMs), Resistive

Wall Modes (RWMs), MARFEs, etc.

® Optimized boundary control (power and particle
exhaust, impurity production, etc.) requires good
alignment of PFCs with magnetic topology.

® Toroidal magnetic topology is very sensitive to
resonant perturbations.
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Nominally axisymmetric tokamaks have
many sources of non-axisymmetric
maghnetic perturbations

® External sources
include:

— Field-errors due to
confinement, heating,
shaping and correction
coils

— MHD control coils (RWM)
and boundary layer coils
® Plasma sources
include:

— Plasma (MHD)
instabilities

— edge current filaments
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Internal (I-) and external (C-) coils are
used for MHD control experiments in DIII-D

® Various I-coil polodial and toroidal mode number configurations,
toroidal phases and parities used for RWM and ELM control.

® The C-coil (not shown) is used on almost
every discharge to correct field-errors
that cause locked modes and Quasi-
Stationary Modes (QSMs).
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Hamilton-Jacobi form of magnetic field is
used for the perturbation analysis

® Represent magnetic field lines in action-  tokamak vacuum
angle coordiantes:  vessel wiall

49 _9H(w.0) . dy __ 9H(,H)
do NP dp 00

H(y,0) = Hy(y) + Ze, H(,0)

the toroidal angle ¢ is a time-like variable
and ¢ is the perturbation amplitude.

® Standard twist map methods used to
study the properties of this conservative
Hamiltonian system:
— Numerical twist maps based on field liNe  oasctic coitbriom in & tokamak

integration codes - TRIP_MAP and
TRIP3D_MAP
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Non-axisymmetric magnetic perturbations
produce separatrix splitting resulting in
the formation of homoclinic tangles

unperturbed separatrix
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Stable and unstable
manifolds intersect
to produce both
resonant and non-
resonant homoclinic

tangles.
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Small random displacements in all the
tokamak coils can create stochasticity

TRIP_MAP with random TF shifts
® Invariant manifolds 1007 ‘= omwnrm i blue dots
around resonant PR field lines
islands (red) N N@)
separate classes Of g gglim, Non TN Lo
coid line i S R o
trajectories. =2
— Field lines move
toward (away) 0.50
from hyperbolic
points along stable

(unstable)
manifolds.

; ._'?. A _myn=2,1

~red lines
invariant
manifolds
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A complex web of tangle intersections near
¥-points produces local island stochasticity

Expanded views of TRIP MAP |slands due to random TF shlfts
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® Field lines in tangles exhibit chaotic trajectories due to:
— Stable-unstable manifold intersections produced by
~ Homoclinic tangles from single or opposing hyperbolic () points.

® Stable-stable and unstable-unstable manifold intersections are

forbidden D’l’-ﬂ
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Tangle intersections between neighboring
iIslands produce global stochasticity

TRIP_MAP (2,1) and (3,1) tangle overlap
1.000 - - - . . :

0.875}

= 0.750}

0.625}

2,1-3,1 flux
exchange |

0.500

0 50 100 150 200 250 300 350
0 (deg)

® Island-to-island intersections result in large scale non-diffusive
field line transport

SSSSSSSS
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Homoclinic tangles appear in the DIII-D separatrix
at very low perturbation amplitudes

TRIP3D_MAP with 300 amptun ~ ® Non-resonant separatrix splitting is
C-c0|! currenlt perturlbatlon produced by smaII magnetic

15} - perturbations:

— Tangles appear with C-coil perturbation

fields of ~ 0.8 gauss at plasma surface
(the toroidal field is 2x104 gauss)

~30x below the field-errors correction
current

— Each perturbation source contributes

1.0

0.5f

Z (m)

0.0

® Sijze and structure of

-0.5 :

. non-resonant tangles
ol : sensitive to:

— up-down symmetry,
triangularity and other
1.5} ~1078322250.00] 125 shape parameters
0.5 1.0 1.5 2.0 2.5 1.14 1.18 1.22 1.26 1.30 1.34
R (m) R (m)
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Complex webs of resonant homoclinic tangles are
responsible for the onset of global stochasticity in
the edge of the DIII-D tokamak

® The edge of a diverted tokamak is very inthe DD C'eoil -
sensitive to the onset of global |
stochasticity!

— Neighboring resonant island tangles 10}
intersect across the high edge magnetic
shear region 05|

— Resonant tangles intersect non-resonant
tangles producing escape trajectories into
the scrape-off layer

® The exact details of 35
the escape
trajectories depend ~ -oes|
on properties of the -7

-0.60}

Z (m)

sources and the ~0.75| 5} —

Shape of the plasma 08050 125 130 135 140 145 0.5 1.0 15 2.0 2.5
R (m) R (m)

IT, E. Evans, R. A. Moyer, P. Monat, Phys. Plasmas 9, 4957 (2002) D”’_D
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Large regions of the edge plasma are connected
to material surfaces by flux exchange through
resonant and non-resonant tangle intersections
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Following part of a lobe that intersects the upper divertor
backwards several iterations shows how field lines mix and

escape from the edge plasma.
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Z (m)

Heat and particles follow stochastic field lines
that escape through non-resonant tangles

TRIP3D_MAP tangles with
10 kA-turns of C-coil current

Ux,
1-2 '251-319rxv_(0) o ® Heat and particles from deep
inside the plasma escape through
107 non-resonant homoclinic tangles
[ ~ » and strike material surfaces in
0.5 | | Sereioie the divertors or other protruding
reughithe W o) structures?
0.0 ® Ppatterns created by the escaping
heat and particle flux can be
—0.5 related to topology of the non-
resonant tangles
-1.0¢ Wu(z<1\)
-1.5} WS(Xo) — 2R. K. W. Roeder, B. I. Rapoport, T. E. Evans, Phys.

05 10 15 20 25 Plasmas 10, 3796 (2003)

R (m) Dili-D
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Non-resonant tangles form spiral-like patterns on
toroidal surfaces such as divertor targets

® _ Toroidal pattern of a DIll-D magnetic field homoclinic tangle
Non-resonant pr01ected onthez=1.100 m plane from TRIP3D MAP

tangles create a 0.8 (107832:2250, I Lol = 10kA-turns)
unique signatures on
plasma facing
surfaces: 0.4l
— spiraling magnetic
footprints on the

divertor target
plates3

— Toroidally localized 02|
hot spots on

L spiraling footprint
of the homoclinic
tangle

0.6

0.2

Y (m)

protruding baffle 04} - unpreturbed
structu re§ ol | upper strike
® At the location of the o
divertor plates the 08 poildm . .k . o
. -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
spiral due to the C- ) \
coil is ~1 cm. Upper baffle radius @ z =1.100 m
3Reminiscent of spirals in N. Pomphery, A. Reiman,
Phys. Fluids B 4, 938 (1992) D=
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The topology of non-resonant tangles is sensitive
to changes in the up-down equilibrium symmetry

® Tangles protrude near
both y-points in
balanced (dRsep ~ 0)
equilibria
— Dominate x-point has a
double lobe structure
— Secondary y-point

lobes shadow lobes
from the primary y-

point

® The exact structure of
the tangles is sensitive
to shape parameters4
like up-down balance
(dRsep), triangularity,
etc and perturbation
amplitude.

151
1.0
0.5f

£ o0}
N

dRsep = 0.004 m

1.0

15
R (m)

2.0

1.5¢

4T. E. Evans, R. K. W. Roeder, J. A. Carter, B. I.
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Rapoport, Contrib. Plasmas Phys. 44, 235 (2004)

dRsep =-0.015m
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The divertor heat flux changes during
maghnetic perturbations from the I-coil

0 | ' i ' 115467
Plasma 115461 7
current '—\ | 1
S o065 \/_] i
Neutral beam
B heating power | |-coil pulse (4.4 kA) 7
(4.4 MW)
0 T Il I n n L L L n n n A : L " n
Peak heat flux Ref. .without
in lower divertor | I-coil pulse
N —
£ 25.0
s
0.0 . ll .
0 1000 2000 3000 4000

time (ms)

before I-coil pulse

® The 4.4 kA I-coil pulse introduces a 46 gauss
magnetic perturbation at the plasma surface.

Diln-D
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The peak in the divertor heat flux slowly
splits during I-coil perturbation

outer strike point peak splits

30

50 115467
W/icm2
0 &  — 2900 ms I-coil off ]
30 E | — 3300 ms I-coil on outer strike 1
é’ 2 point
-20 [
10 : inner strike
30 g X point
® 10
o [
<
125 . - )
100 120 140 160

major radius (cm)

150 1000

® Split heat flux peaks are consistent with divertor plate homoclinic
tangle intersections

— Correlated with I-coil pulse

— Larger than modeling predicts and time dependent
Plasma response (evolution/amplification) is important D”’-D
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Plasma emissions in the lower divertor
also splits during I-coil perturbation

07-29-03 07-29-03
00:02:99 00:03:06

® Tangentially viewing camera looking at plasma emissions
in the lower divertor sees a splitting of the strike point
recycling when the I-coil is pulsed. DIl-D
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Magnetic perturbations from plasma
instabilities also drive homoclinic tangles

200 E'sScrape-off layer current ' growing unipolar ' 103175 =
= (Amps) nonaxis Iocked mode 3
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O E. .\ B Y [N P
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— i | l f E
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® Currents in the scrape-off layer sometimes produce perturbations
larger than those due to external coils.
Dii-D
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Quasi-stationary modes produce rotating,
time dependent, magnetic perturbations

] 73582
360 4 b-radial phase
240:§ ________________________________________ IRTV view
¢ = 165°
120 i
O g"_l_"_ —"“"l—_nl—_-_l ________________ .
40 - -
1 b-radial amplitude (gauss) =
—_ locked
| mode
O — N I ——— — sensor
2500 3000 3500 4000 |

time (ms)

® Rotating magnetic perturbations from Quasi-Stationary Modes
(QSM) sweep divertor heat flux profiles past IRTVs viewing the
lower divertor:

— Toroidal mode structure is resolved Din-oD
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Rotating QSMs produce spiral-like
signatures in the divertor heat flux

73582

12cm<—>.

{b-radial phase | [

2.0 m/n=2/1 mode toroidal midplane angle
referenced to the IR camera (¢ = 165°)

240 ______________________ <40 3260 ms H 8=cm
120- [ £ '
0 | N rJT RN A A E 3 0 3240 ms
40 ®
=
(@]
o

{ bradial amphtude
| (gauss)

20 . 3220 ms
0 _ i 0.0 3200 ms
AR AR 90 100 110 120 130 140 150 160 170180
2500 3000 3500 4000 Major Radius (cm)

time (ms)
® The distance between the heat flux peaks increases as the QSM
rotates past the IRTV
— Consistent with a spiral structure induce by a homoclinic tangle
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An n=1 toroidal mode structure is
observed as a QSM rotates past the IRTV

73582
360_§ bradlal phase
240—; 3320 ms
12
)L 3300 ms
40

04 M/n=2/1 mode toroidal midplane angle 3260 ms

referenced to the IR camera (¢ = 165°)

{vradil ampliude (gauss)
0 i

(] — i 0.0 —M

90 100 110 ‘120 130 140 150
2500 3000 3500 4000 Major Radius (cm)

fime (ms|

® As the QSM rotates past the IRTV with relatively constant
amplitude an n=1 toroidal mode structure is observed

DIii-D
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The mode structure appears to be obscured
by a change in the mode amplitude

- 73582
30 {b-radial phase i >0
240:% ________________ A 0. 3380 ms
120- (\
0 _| R 0
40 i f34oo ms
| orradial ampitude & 0 e reatin tel camaa b 1627
| (gauss) £
20 £ ‘ol 3440 ms
| ’\ 3420 ms
0 — 0.0 . L\
2500 3000 3500 400 90 100 110 120 130 140 150 160 170 180

Major Radius (cm)
time (ms)

® Other toroidal modes may also be present but are difficult to
resolve with the IRTV data.
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Additional commments and observations

® Experimental signatures of homoclinic tangles are also
seen during:
— Edge Localized Modes (ELMs)
toroidal asymmetries in scrape-off layer currents seen in DIII-D
Split, spiraling heat flux footprints seen in ASDEX-U
— Resistive Wall Modes (RWMs) in DIII-D
— Disruption halo currents in DIII-D

® With increasing tokamak performance levels (higher
plasma pressure and confinement) MHD instabilities tend
to be more severe implying:

— A greater need for external control coils
— Additional complexity in the edge plasma

® Dynamical systems analysis provides a starting point for
understanding the topology of the edge plasma (and
interactions with material surfaces) but self-consistent
plasma models are needed.
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Conclusions

® Modeling results show that two types of homoclinic tangles are
involved in determining the edge magnetic topology of
poloidally diverted tokamaks:

— resonant tangles surrounding helical magnetic islands result in
global stochatic flux exchange across the plasma edge

— non-resonant tangles establish escape trajectory pathways to
material surfaces

® Experimental measurements demonstrate that tangle-like
structures turn on and off with external perturbations

— Calculations of externally driven spirals and splitting widths in the
divertors are too small to match the experimental data
® Time dependent tangle signatures are seen during plasma
generated MHD activity
— Toroidal and radial structure match those calculated with the
numerical model
® Plasma effects need to be included in the model and
comparisons with experimental data are required
Dinl-p
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