Reconstructing the Equilibrium of W7-AS

M.C. Zarnstorff¹

With thanks to J. Geiger², A. Weller², and A. Werner².

¹Princeton Plasma Physics Laboratory ²Max-Planck Institut für Plasmaphysik, Germany

Stellarator Theory & General Atomics 28 July 2005

Outline

- Goals and motivation
- Available Data
- Codes
- Results
- Summary

W7-AS – a flexible experiment

5 field periods, R = 2 m, minor radius a \leq 0.16 m, B \leq 2.5 T, vacuum rotational transform 0.25 \leq $\iota_{ext} \leq$ 0.6

Completed operation in 2002

High β experiments need better equilibrium treatment in stellarators

- ⟨β⟩ ≈ 3.4 % : Quiescent
- At low $\beta \ll 1\%$, vacuum flux plot is reasonable approximation
- for $\beta \ge 1\%$, discrepancies in diagnostic mapping, power flow, Location of divertor islands...

Issues:

- What is the plasma volume? and thus beta?
- What is the pressure profile? How to map diagnostics?
- What is the iota profile? and other equilibrium properties
- -- How to get a self-consistent equilibrium??

Data for Equilibrium Reconstruction

- Available data:
 - –19 magnetic measurements, including: segmented Rogowski, flux loops, diamagnetic loops
 - straight forward interpretations of magnetics: I_P, W_{dia}
 - 45 point single-time Thompson scattering system assume $p_i = p_e$, due to very high density \Rightarrow short equilibration time
- Magnetics integrators trigger after start of field-coil flattop. Signals compensated for coil-current noise coupling.
- From SVD analysis: magnetic measurements sensitive to 3 moments of pressure profile and 2 moments of current profile.

STELLOPT: Equilibrium Reconstruction

Originally developed for the design of NCSX & QPS

STELLOPT Equilibrium Reconstruction

+ Code & structure exists. Easy to modify, can incorporate almost any feedback. Lots of experience using it for design.

+ Already parallelized, using either MPI or multi-processor nodes (shared mem)

• free-boundary VMEC based. Reasonably fast, but can only represent simply-connected nested closed flux surfaces

– Each iteration is a fully converged equilibrium => slow

Examples:

Size and W_{dia}	free vbls. 2	iterations <15	wall-clock ~0.5 hr
Thomson Only	12	~200	~2 hr
Magnetics+Thomsor	15 ו	~300	~3 hr

3D Limiting Structures are Complicated

- Vessel specified by Vmec-like Fourier series (R, Z)
- Other limiters specified as piece-wise-linear sequence at discrete ϕ values

3D Limiting Structures are Complicated

Pressure profile reconstructed with Thomson Scattering

MCZ 050728 10

Information in Magnetics Data

Database of magnetic diagnostic simulations created for

- varying profiles & W_{pl}
- fixed coil currents
- $-I_{P} = 0$

Use SVD analysis to find number of distinguishable 'eigenvectors'

- If analyze whole data base, fraction of variance due to each eigenvector is 99.9% 4.622e-2% 1.079e-2% First eigenvector identifiable as W_{pl}
- If analyze database subset at fixed energy, p-profile variations only, j=0 92.7% 7.22% 5.946e-2%

 If analyze database subset at fixed energy, j-profile variations only, p parabolic

100% 1.635e-2% 7.47e-3%

• If analyze for different fixed W_{pl}, get similar answers, but eigenvectors change

=> At most, magnetic sensitive to 2 moments of current, 3 moments of pressure

Magnetic Diagnostics are Sensitive to Current

Normalized minor radius

Relative Current Magnitude

- Small, but significant current inferred from equilibrium fit.
 Estimated uncertainty of magnitude approx. ± 20% from Rogowski segments
- Three moments used to fit current profile, higher order moments used to force j(a)=0
- $\chi^2_{mag} \sim 0.83$ /diag.
- Imposing calculated currents gives $\chi^2_{mag} \sim 2$ / diag.
- inconsistent with magnetic measurements.

Reconstruction: Lower core iota

Magnetic Configuration Changes Calculated Flux Surface Topology

- PIES equilibria, starting from STELLOPT reconstructions
- See experimental differences in divertor imaging data

Summary

- A practical, initial stellarator equilibrium reconstruction code has been created, using STELLOPT / VMEC / DIAGNO / AJAX ...
 - As with tokamaks, it greatly helps to have internal profile information
 - Already had a big impact in our understanding of W7-AS experiments
- W7-AS magnetics diagnostics show sensitivity to internal profiles
 - two moments of J (including total I_P)
 - Three moments of p (including W_{PL})
- PIES indicates flux surface topology changing
 - not in VMEC treatment
 - But PIES can't handle realistic limiters, can't simulate diagnostics
- W7-AS analysis uses available magnetic diagnostics
 - Not clear how much information would be available in a larger magnetic diagnostic set designed for reconstruction