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• The nature of ideal MHD ballooning modes in 3-D 
systems differs qualitatively from ballooning modes in 2-D 
systems
– Field-line dependence of ballooning mode eigenvalues
– This typically corresponds to a global mode that is 

highly localized on the magnetic surface  ~ Can
nonideal physics (e. g. FLR physics) more easily 
stabilize these localized modes in 3-D relative to 2-D 
systems?  

– This work, include FLR effects in ballooning mode 
formalism of 3-D systems

Motivation



Ideal MHD ordering and WKB-like formalism is 
used throughout

• For ideal MHD ballooning modes

• Use large k⊥ expansion

• 1/ε ~ n  (“infinite-n theory”) large toroidal mode number
• Leading order solution leads to an ordinary differential 

equation for ξψ along the field line, the ballooning equation
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Two-fluid physics brings in finite Larmor radius 
effects

• MHD equations modified by Hall-MHD terms in Ohm’s law and 
gyroviscosity

• Order such that FLR corrections enter 

• Modified ballooning equation
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Modes correspond to quantizable action integrals 

• Action integrals of WKB trajectories are quantized

• Quantizable trajectories are actual MHD modes of the 
system.
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The inclusion of FLR physics in 2-D systems is 
straightforward

• In tokamaks, the Ια =   kα dα quantization is trivial ---
toroidal mode number n is a good quantum number.  Local
eigenvalues are independent of field line label, α ″ kα is 
conserved along ray trajectories.
– ωi

* =  kα (dp/dψ)/ne = kα Ω*i is constant on WKB orbit 
equations.  Hence, ω2 = λ is conserved on WKB orbits 
and the frequency satisfies (Tang et al, 1980)

– For unstable local eigenvalue λ < 0, stability is obtained 
if the criterion is satisfied
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In 3-D systems, the inclusion of FLR physics 
introduces complications

• In stellarators, local eigenvalues are generally functions of 
field lines, λ = λ(ψ, θk, α) --- kα and λ are no longer  
constants on WKB rays. (Nevins and Pearlstein, ‘88)

• Only the α ray equation changes, 

• Given unstable mode (λ < 0) described by particular values 
(αo, qo, kαo, kqo), if

Mode is stabilized
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Ideal ray orbits lie on topological spheroids in 
phase space labeled by (q,θk,α)





The projection of the ray equations into kα−α
space shows closed orbits - quantizable action



The projection of the ray equations into kq−q 
space shows multiple “timescales”



Time scale separations typically allow for 
approximate integrability of the system



Inclusion of FLR eliminates the topological 
spheroids --- integrability?



Summary

• Inclusion of FLR effects into ideal MHD ballooning modes 
discretizes the spectrum.

• The inclusion of FLR physics on ballooning stability is 
complicated by the non-constancy of ω*i ~ kα along the 
ray equations (“n” is not a good quantum number.)

• FLR stabilization is given by the criterion

– kα|max corresponds to peak value on periodic ray orbit 
– λο is the corresponding ideal MHD eigenvalue (λ = 

ωMHD
2).
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