NCSX Edge Modeling with PIES

Tom Kaiser

Stellarator Edge Theory Teleconference
8 July 2004

LCMS is Determined Visually from Poincare Surface-of-Section

3 surfaces-of-section with starting points at:

$$(R_0 , Z_0 , \Phi_0) = \begin{cases} (1.720, 0, 0) & \text{not smooth} \\ (1.725, 0, 0) & \text{LCMS (red)} \\ (1.730, 0, 0) & \text{internal islands} \end{cases}$$

Global Integration Error Scales as L $(\Delta s)^4$

4th-order Runge-Kutta Integrator

Integration error determined by forward/backward integration (e.g., 100m on LCMS)

$$\varepsilon \propto N (\Delta s)^5 = (N \Delta s) (\Delta s)^4 = L(\Delta s)^4$$

Plasma/Wall Gap is a Smooth Function of Φ

Minimum distance from LCMS to wall varies smoothly from 3 to 6 cm as Φ varies from 0 to 60°

Rate of Field-Line Separation Depends on Starting Position

T. B. Kaiser LLNL 8 July 04

Work in Progress

◆ Divertor Modeling

- Benchmarking wall heat-load determination:
 - Field-line tracing with trajectory diffusion
 - 3D finite-difference solution of electron energy transport equation (McTaggart, Zagorski, et al, PSI 16)