Experimental Tests of Quasisymmetry in HSX

J.N. Talmadge
HSX Plasma Laboratory
UW-Madison
Outline

• Quasihelically symmetric with no toroidal curvature ➔ high effective transform
 - Small deviation from flux surface; Parallel currents reduced in magnitude
 - Helical Pfirsch-Schlüter current
 - Bootstrap current reduces transform
 ➔ Good agreement of V3FIT code to diagnostic coil data
• Good confinement of trapped particles ➔ MHD instability
 ➔ First reflectometer measurements shows core localization of mode
• B = 0.5 T: Reduction of neoclassical momentum, particle and heat transport with anomalous component dominant in QHS
• B = 1.0 T: Thermal plasmas, T_e up to 2.5 keV
• 1D transport model ➔ Large curvature, short connection length drives TEM and anomalous transport
 - Good model for temperature profile and confinement scaling
• Future Plans and Conclusions
Quasihelical stellarators have high effective transform

Quasihelical: Fully 3-D, BUT

Symmetry in $|B| : B = B_0[1 - \varepsilon_h \cos(N\phi - m\theta)]$

In straight line coordinates $\theta = t\phi$, so that

$$B = B_0[1 - \varepsilon_h \cos(N - m t)\phi]$$

In HSX: $N=4$, $m=1$, and $t \sim 1$

$$t_{\text{eff}} = N-m \ t \sim 3$$

With $t \geq 1$ and $n = 4$ periodicity of the quasisymmetric field, modulation of $|B|$ on field line $t_{\text{eff}} \sim 3$
Lack of toroidal curvature verified by passing orbit measurements

• Grad B drift in HSX confirms lack of toroidal curvature
• Small orbit shift confirms large effective transform of $N-m_l$
High effective transform reduces Pfirsch-Schlüter and bootstrap current

Pfirsch-Schlüter current:
- reduced in magnitude
- helical in HSX due to lack of toroidal curvature
- dipole currents are opposite of tokamak where field in HSX is tokamak-like (grad B drift is opposite).

Bootstrap current:
- reduced in magnitude
- opposite direction to tokamak
- reduces transform but confinement improves slightly due to \(N-\ell t \) factor

\[
J_{PS} = \frac{1}{B_0} \frac{dp}{d\psi} \sum_{n,m} \frac{n I + mg}{n-m \ell} \delta_{nm} \cos(n\phi-n\theta)
\]

\[
J_B \sim 1.46 \sqrt{b_{nm}} \frac{m_g}{n-m \ell B_0} [\text{gradients}]
\]

Boozer, ’82 ‘92
3 axis coils measure current evolution at two toroidal locations

- 16 3-axis pick-up coils mounted in a poloidal array
- Two sets of measurements separated by <1/2 field period.
- From Pfirsch-Schlüter current: $B_\theta \sim \cos \theta$ and $B_r \sim \sin \theta$
Rogowski confirms bootstrap current unwinds transform

- For on-axis heating, bootstrap current rises during 50 ms ECH
- Colder plasmas with off-axis heating show saturation
- Good agreement with BOOTSJ (ORNL) for extrapolated currents
- Current direction consistent with lack of toroidal curvature
Coil array shows Pfirsch-Schlüter current dominant early in time

- Early time $t = 10$ ms $\Rightarrow I_B = 0$ in model
- Bootstrap current probably underestimated

*** Special thanks to Steve Knowlton and V3FIT team! ***
Bootstrap current shows up later in time

- Bootstrap current shows up as DC offset in B_θ
- Later in time $t = 50$ ms $\Rightarrow I_B = \text{BOOTSJ}$ value (overestimated)
- Helical PS current evident in reversal of B_r
Bootstrap current decreases transform in HSX

- Pressure profile from TS; current density profile from BOOTSJ
- Pressure and Current density profiles in VMEC → transform profile
- With 500 A, iota is just above one → no instability signatures observed
Symmetry is broken with auxiliary coils

- Phasing currents in auxiliary coils breaks quasihelical symmetry (n=4, m = 1) with n = 4 & 8, m = 0 mirror terms
- Neoclassical transport and parallel viscous damping increased

\[+ + + - - - \quad \text{‘Old’ Mirror} \]
\[- + + + - - \quad \text{‘New’ Mirror} \]

Minimal displacement of magnetic axis at ECH and TS ports
New mirror configuration increases effective ripple while keeping magnetic axis stationary

\[\varepsilon_{\text{eff}} \text{ increases by factor of 8 at } r/a \sim 2/3 \]

New Mirror Configuration allows for both on-axis heating and on-axis Thomson profiles

Thomson Scattering Laser Path (separated by 1 field period)

ECRH Beam
…. while transform, well depth and volume remain almost fixed

<table>
<thead>
<tr>
<th>Rotational Transform</th>
<th>Well Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>QHS</th>
<th>‘New’ Mirror</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transform $(r/a = 2/3)$</td>
<td>1.062</td>
<td>1.071</td>
</tr>
<tr>
<td>Volume (m^3)</td>
<td>0.384</td>
<td>0.355</td>
</tr>
<tr>
<td>Axis location (m)</td>
<td>1.4454</td>
<td>1.4447</td>
</tr>
<tr>
<td>$\varepsilon_{\text{eff}} (r/a = 2/3)$</td>
<td>0.005</td>
<td>0.040</td>
</tr>
</tbody>
</table>

< 1%
< 10%
< 1 mm shift
factor of 8
Good confinement of trapped particles

- Collector plate in direction of electron \(\nabla B \) drift shows large negative potential when quasisymmetry broken.
- Larger HXR flux in QHS configuration.
BUT … global coherent mode observed at 0.5 T

- Fluctuation observed on interferometer and magnetic coils. Absent at B = 1.0 T
- Frequency scaling with mass density consistent with Alfvenic mode
- Propagates in electron diamagnetic direction
- Amplitude decreases as quasisymmetry is degraded
First results from Reflectometer

- Extraordinary mode at $B = 0.5$ T
- Coherent mode in QHS localized to core region
- Mode is absent at high symmetry-breaking
- Broad turbulent spectrum observed in Mirror mode
HSX has demonstrated benefits of quasisymmetry

- Reduction in momentum, particle and heat transport: $B = 0.5$ T
- Neoclassical is reduced BUT anomalous contribution now dominates

Momentum

Larger flows in QHS with equivalent torque

- Lower parallel viscous damping

Particle

Peaked density profiles in QHS

- Reduced thermodiffusion

Heat

Higher T_e in QHS with same absorbed power

- Lower χ_e
Off-axis Heating Confirms Thermodiffusive Flux in Mirror

- With off-axis heating, core temperature is flattened
- Mirror density profile becomes centrally peaked
Off-axis Heating Confirms Thermodiffusive Flux in Mirror

- With off-axis heating, core temperature is flattened
- Mirror density profile becomes centrally peaked

![Graph showing ECH Resonance and On-axis heating](image-url)
Electron temperature profiles can be well matched between QHS and Mirror

- To get the same electron temperature in Mirror as QHS requires 2.5 times the power
 - 26 kW in QHS, 67 kW in Mirror \(\rightarrow \) large nonthermal population at 0.5 T
 - Density profiles don’t match because of thermodiffusion in Mirror
Thermal Diffusivity is Reduced in QHS

- QHS has lower core χ_e
 - At $r/a \sim 0.25$, χ_e is 2.5 m²/s in QHS, 4 m²/s in Mirror
 - Difference is comparable to neoclassical reduction (~2 m²/s)

- Two configurations have similar transport outside of $r/a \sim 0.5$
Anomalous conductivity is difference between experimental and neoclassical

- Little difference in anomalous transport between QHS and Mirror
• Good agreement between kinetic and diamagnetic stored energy
 ➔ minimal nonthermal contribution
• Core T_e about twice as large in QHS as Mirror configuration
• Mirror density profile more hollow as T_e gradient increases
Minimum difference profiles to compare transport at $B = 1.0 \, \text{T}$

- More than twice the power in Mirror configuration to approximate the temperature profile
- Density profile still slightly more peaked in QHS than Mirror
Electron thermal conductivity lower in QHS than Mirror

- Ray-tracing code calculates power deposition profiles
- Total power scaled to diamagnetic loop measurement of stored energy
- QHS experimental thermal conductivity ~ 3 times lower than Mirror:
- Neoclassical calculation is being redone using Spong’s PENTA code
Can we model anomalous transport in HSX?

- Rewoldt ’05 using FULL code showed HSX had largest linear growth rate to ITG/TEM modes compared to LHD, W7-X, NCSX, QPS
- Goal is to apply predictive transport modeling to HSX using multi-mode approach
- Neoclassical transport based on DKES, anomalous transport based on Weiland analytic model
Microstability estimates using axisymmetric models with “quasisymmetric” approximation

- 3D stability calculations find most unstable eigenmodes (ITG/TEM) ballooning in the low field, bad curvature region in HSX

- Dominant particle trapping comes from helical ripple, $\varepsilon_H (0.14 \cdot r/a = 1.4 \cdot r/R)$

- Reduced connection length, $L_c = q_{\text{eff}} R = R/|N-m_\perp| \approx R/3$, leads to very low collisionality electrons across the minor radius \rightarrow TEM ($T_e >> T_i$)

- Normal curvature rotates helically, with bad curvature following the location of low field strength

- $\kappa_{N,\text{max}} \sim 1/45 \text{ cm}^{-1} \neq 1/R$ (R=120 cm)

- To account for toroidal drifts in drift wave models, $R/L \rightarrow (R/3)/L$
Weiland model with simplified assumptions benchmarked against GS2 code

- Linear growth rates from Weiland and 3D GS2 are in agreement near experimental gradients \((a/L_n, a/L_{Te} = 2 \rightarrow 5\), largest difference \(\sim 30\%\))

- Weiland growth rates 2\(\times\) smaller without “quasisymmetric” approximation
Model predicts gross features of T_e profile and confinement scaling

• Weiland model, with geometry approximations, gives reasonable fit to temperature profile.

• Captures the scaling and magnitude of confinement times at $B = 1.0$ T
Near Term Plans

• Emphasis in near term will be to measure flows and radial electric field and compare to neoclassical modeling ➔ diagnostic neutral beam mounted on HSX for CHERS

• Compare experimental data to Spong’s PENTA code. How important is it to solve 2 momentum balance equations on flux surface for a quasisymmetric plasma? How do changes in effective ripple affect E_r?

• Compare reflectometer measurements of turbulence at plasma core for QHS versus Mirror at 1 T. How important are differences in trapped particle fraction and $E \times B$ shear?

• Novel low-cost HIBP system being developed with RPI

• Model time evolution of neoclassical currents and compare to measurements for different magnetic geometries.

• Obtain ion root plasma for Mirror to maximize differences with QHS configuration of neoclassical and possibly anomalous transport
Conclusions

• Lack of toroidal curvature verified by
 • grad-B drift of passing particle
 • helical Pfirsch-Schlüter current
 • bootstrap current that decreases transform
• High effective transform verified by
 • small drift of passing particles from flux surface
 • reduced magnitude PS and bootstrap currents
• Good confinement of trapped particles with quasisymmetry ➔ MHD mode observed
 • first reflectometer results shows mode localized to core
 • broad density fluctuation spectrum in Mirror compared to QHS
Conclusions

• ECH at B = 0.5 T
 • Reduction of particle, momentum and heat transport with quasisymmetry
 • Large themodiffusive flux in Mirror yields hollow density profiles, reduction of neoclassical in QHS results in peaked density profile.

• ECH at B = 1.0 T
 • Nonthermal component is small
 • T_e up to 2.5 keV is observed
 • Multi-mode model of neoclassical + modified Weiland for anomalous agrees well with temperature profile and confinement time.

⇒ Quasihelically symmetric configuration improves neoclassical transport. Initial results suggests anomalous transport may be high.