EQUILIBRIUM AND STABILITY IN STELLARATORS: THOUGHTS FROM A TOKAMAK PERSPECTIVE

A.D. Turnbull
General Atomics

Presentation for the Stellarator Theory Teleconference

June 19 2003
Contributions from colleagues are greatly appreciated:

P. Garabedian (Courant Institute NYU)

G.Y. Fu (PPPL)

M.C. Zarnstorff (PPPL)

Long-Poe Ku (PPPL)

But the outrageous and just plain wrong statements are entirely my own!
MHD STABILITY CRITERIA APPEAR TO BE VIOLATED IN STELLARATOR EXPERIMENTS

- Stellarator experiments have substantially exceeded the stability limits predicted from local Mercier and ballooning code calculations:
 - LHD and W7-AS have significantly exceeded the predicted β limits

- Global calculations are closer to experimental stability limits:
 - But even these appear to be violated in recent W7-AS experiments

- This superficially appears to be a quite different situation from the standard paradigm in tokamaks:
 - Ideal MHD appears to predict not just tokamak stability limits but also growth rates and mode structures in many situations

- How can the two situations be resolved?

⇒ Stellarators and tokamaks do have the same underlying physics based on Maxwell’s Equations and Newtonian mechanics!
AT SECOND GLANCE THE TWO SITUATIONS ARE NOT ALL THAT DIFFERENT

• Tokamaks also routinely violate some MHD stability limits:
 – MHD limits are open to interpretation and cannot be applied blindly as absolute hard limits
 – MHD limits can be sensitive to details in the equilibrium

• There are also some important distinctions between tokamaks and stellarators that may produce superficially different behavior
 – MHD theory, as applied to both, assumes the existence of nested flux surfaces:
 ⇒ In tokamaks this is sometimes not the case but normally it is an accurate assumption
 ⇒ In stellarators this is not always the case:

 Surfaces may not exist!
 They may exist but be non-nested!

 – We already know this to be partly true! But:
 ⇒ Given the sensitivity of the stability to the equilibrium the assumption of nested flux surfaces might be a poor approximation for stability even if islands are small
TOKAMAKS ALSO ROUTINELY VIOLATE SOME MHD STABILITY LIMITS

• The most well known example is the internal kink instability:
 – Tokamaks routinely operate with \(q < 1 \)
 – The sawtooth instability is a consequence of the internal kink but is not at all well described by it
 ⇒ Non-ideal effects are important for low growth rate modes
 ⇒ Nonlinear consequences are usually benign

• Tokamaks also routinely violate Mercier interchange stability limits:
 – The Mercier limit is normally close to the internal kink limit but appears to be largely irrelevant in tokamaks

• Ballooning modes can have consequences in tokamaks near ‘the \(\beta \) limit’:
 – Interchange modes are in principle a special case of ballooning
 ⇒ But the consequences of reaching the ballooning limit are not always devastating

• In H-mode Tokamaks also routinely reach intermediate \(n \) external mode stability limits:
 – ELMs appear to be the result of these instabilities
 ⇒ Nonlinear consequences are generally benign
IT IS NOT EVEN CLEAR THAT LOCAL MHD STABILITY CRITERIA SHOULD BE RELEVANT FOR STELLARATORS

- Localized modes predicted to be unstable for β well below the global MHD limits should be stabilized by kinetic effects:
 - Finite n corrections are needed for physically meaningful predictions
 - In tokamaks, finite toroidal mode number n corrections to ballooning and Mercier stability are generally small
 \Rightarrow The infinite n calculation accurately reflects the real limit
 - In stellarators, the global stability codes in principle incorporate the high n localized modes with low and intermediate n
 \Rightarrow In practice the high n modes are numerically excluded

- In tokamaks high and low n are uncoupled and evaluated separately:
 - In Stellarators, they are coupled in principle and this is not accounted for in the localized criteria

- It is more realistic to ignore localized Mercier and ballooning limits in Stellarators and just use low and intermediate n global calculations:
 - By excluding the high n modes that in practice are stabilized by finite orbit effects the global codes are more closely reflecting the physics
 \Rightarrow In the global calculations the range of n needs to be terminated at the limit where finite orbit effects become important
TOKAMAK STABILITY LIMITS DEPEND SENSITIVELY ON THE EQUILIBRIUM

• It is not normally sufficient to fit the equilibrium to just the global characteristics of the discharge:
 − Stability depends quite sensitively on the details of both the current density (or safety factor) and pressure profiles
 ⇒ One can obtain widely varying results depending on the form assumed for the profiles for similar global parameters
 ⇒ Profiles need to be measured accurately and used in reconstructing the equilibrium for the stability calculations

• In Stellarators the equilibrium is believed to be known largely from the external coils: But
 − The ϕ profile is often taken from the vacuum profile
 ⇒ It is not normally measured in the discharge and may be different at finite β
 − The pressure profile is not known as a function of flux
 ⇒ At most it is measured as a function of space and the mapping to flux space needed for the equilibrium depends on the ϕ profile
THE ASSUMPTION OF NESTED FLUX SURFACES MAY NOT BE REASONABLE FOR ESTIMATING LINEAR STABILITY

- The assumption of nested flux surfaces may be invalid:
 - At least it may be an insufficiently good approximation to yield the observed stability
 - Finite β can deteriorate the nested vacuum surfaces and given the sensitivity of the stability to the equilibrium configuration
 ⇒ Stability predictions using nested surfaces could be meaningless at finite β

- The islands and stochastic regions may be small but they may be ubiquitous throughout significant regions of the cross section:
 - Local flattening of the profiles and non-nested topology may yield very different stability from the ‘nearby’ nested configuration
 ⇒ The nested configuration may be linearly unstable but evolve nonlinearly to a configuration with ‘braided’ surfaces or thin islands, with flattened profiles in these regions
 - The new configuration will be linearly stable
 ⇒ The linear stability calculation using the approximate nearby nested flux surface equilibrium will yield the wrong result!
EQUILIBRIUM STABILITY AND TRANSPORT ARE NOT SEPARABLE IN STELLARATORS

• Existence of a nested flux surface equilibrium can be considered as either an equilibrium or a stability problem:
 – Unstable equilibria with nested surfaces will evolve to a nearby state with non-nested surfaces with lower energy if it is physically possible
 – Transport is strongly dependent on underlying equilibrium magnetic topology and in turn determines the possible equilibrium profiles

• Equilibrium codes can be considered stability codes:
 – An equilibrium computed under certain constraints must be stable unless those constraints can be avoided by a physically valid motion:
 – Otherwise any iterations for force balance in which an iterative error mimics an allowed perturbation will evolve away from the equilibrium unless constrained to not do so
 – A variational code will find the energy minimizing state unless constrained to not do so
VMEC, PIES, AND HINST EQUILIBRIUM CODES CAN GUARANTEE VARYING DEGREES OF STABILITY

• VMEC imposes simply nested flux surfaces:
 – Profiles assumed for $p(\psi)$ and a function specifying current density j
 \Rightarrow Equilibria should be stable to all topology preserving and profile preserving (i.e. fixed $p(\psi)$ and j) MHD instabilities

• PIES and HINST have few constraints on the equilibrium:
 – Profiles assumed for $p(\psi)$ and a function specifying the current density j (an integration constant on each flux contour for PIES)
 \Rightarrow Equilibria should be stable to all profile preserving (i.e. fixed $p(\psi)$ and j) MHD instabilities
GUARANTEE OF STABILITY IS SUBJECT TO IMPORTANT CAVEATS

- Claim is that convergence to physically unstable equilibria is not possible unless constraints are imposed on the numerical procedure that prevent either:
 - Symmetry breaking perturbations away from force balance or
 - Equilibrium states without specific symmetries

 ⇒ Lack of convergence does not imply lack of stable equilibrium

- PIES and HINST assume $p = \text{constant}$ for flux surfaces inside islands:
 - Pressure is a different function of flux in separate simply connected regions
 ⇒ p is not a single valued function of ψ
 - States with different prescriptions for the multiple values for p and j in different simply connected regions (islands etc.) are possible and may be physically accessible
 ⇒ The actual profiles will be determined by transport and the topology of the region
MAJOR QUESTION: SHOULD WE IGNORE MHD STABILITY PREDICTIONS BASED ON NESTED FLUX SURFACE EQUILIBRIAS

• Local stability criteria probably should be ignored:
 – There is little reason that infinite n should provide a physical limit
 – Finite n corrections appear to be large given the difference between the global code limits and the infinite n localized limits

• Global MHD stability is probably valid but must be applied to the right equilibrium:
 – Need to use the measured equilibrium profiles
 – May need to construct a non-nested flux surface equilibrium (with islands)
 – Flux surfaces might not even exist

• The nonlinear consequences are crucial in interpreting the results of a stability calculation:
 – Generally it might be expected that internal modes surrounded by a fairly robust and stable outer shell might be benign
 – Is there a way to quantify this without doing the full nonlinear calculation?
FINAL QUESTION: WHAT SHOULD WE DO? HOW SHOULD WE PROCEED?

• Is there a role for equilibrium and stability codes based on nested flux surfaces?
 – Under what conditions is nested surfaces a valid approximation for stability calculations?
 – Does linear instability of a nested flux surface equilibrium simply result in benign nonlinear evolution to a ‘nearby’ non-nested state?

• Can we formulate the stability problem in terms of finding nonlinearly stable equilibria:
 – Is it possible to develop a general equilibrium code with few imposed constraints that can guarantee stability
 – How can one distinguish a failure of the numerical scheme to converge from nonexistence of a stable nearby equilibrium?