The effect on neoclassical transport of a fluctuating electrostatic (ES) spectrum

H.E. Mynick, PPPL,
A.H. Boozer, Columbia U.

Stellarator theory teleconference, Sept. 23, 2004
We consider how transport changes in toroidal devices when one superposes on the background magnetic field B a specified spectrum $\{\varphi_k\}$ of electrostatic (ES) modes, representing turbulence, or an externally-applied E-field.

- **2 intuitive pictures** for the effect:
 (1) Additive (superposition) picture:
 Commonly assumed that total diffusion coefficient D is a sum of neoclassical and anomalous contributions,
 $$D = D_0^{nc} + D^{an},$$
 e.g., with $D^{an} \sim |\varphi|$ (strong turbulence), $D^{an} \sim |\varphi|^2$ (weak turbulence, quasilinear theory, some ripple transport).

 (2) ν_{ef} picture:
 One might instead expect the fluctuations to enhance the total effective collisionality $\nu_{ef} = \nu + \nu_{an}$ over the purely collisional rate ν, shortening the decorrelation time.
Configurations:

- We study the transport in 3 configurations:
 (1) $7q_1_tok$ = tokamak obtained from $7q_1$ by taking all Fourier components B_{mn} of magnetic field strength $=0$ for $n\neq 0$.

- Plot $B(\theta, \zeta)$ and B(along field line):

(2) $7q_1$ = one variant of the quasiaxisymmetric stellarator LI383, on which NCSX is based.
$$j = \text{conventional (m,n)=(2,6) stellarator.}$$

-Ambipolar electric field E_r:

$$E_r = -\partial_r \phi_0, \quad \phi_0 = \alpha E (1 - \psi/\psi_a) \approx \alpha E (1 - r^2/a^2).$$
Perturbing Spectra:
- All configs have $q \in [2.53, 1.51] \approx [5/2, 3/2]$.
- Spectrum S1: Model turbulence with a small spectrum of low-n modes with $q_{mn} = m/n$ in this range: $m/n = \{3/2, 5/3, 2/1, 4/2, 6/3, 5/2\}$, with drift-wave (DW)-like frequencies,
\[\omega_{mn} = \alpha_\omega \omega_k \frac{1+k^2_\perp \rho^2}{(1+k^2_\perp \rho^2)},\]
amplitudes $e\varphi_{mn}/E_1 = \hat{\alpha}_m A_m(\psi)$, with $E_1 = 1$ keV,
\[\max(A_m(\psi)) = 1, \ \hat{\alpha}_m = 10^{-3} \alpha_A/(1+k^2_\perp \rho^2),\]
with α_ω, α_A multiplicative parameters, scanned in numerical studies.

Fig.4
Spectrum S2: As S1, but take all $n=0$.

- Spectrum S2 has larger $k_{||} \Rightarrow$ larger $E_{||} \Rightarrow$ enhanced capacity to break bounce-action J_b, energy E, and so enhance ν_{ef}.

- S2 models externally-applied RF fields, such as employed on the Saturn stellarator[1] to detrap electrons[1]:

![Fig. 4. The ratio r/r_o as a function of the central frequency $\tilde{f} = f_1 - f_2$, Δf is the calculated range of reflection frequencies for the localized electrons found from Fig. 1.](image)

- More recently, some numerical studies have considered possible applications of externally-applied fields, detrapping electrons to control E_r,[2] entrapping ions for impurity removal[3].

Simulations:

- With background fields $\mathbf{B}(\mathbf{x})$, use GC code ORBIT to integrate the orbits of N_p particles, taking a monoenergetic distribution of hydrogen ions with energy $E_0=1$ keV, launched halfway out $[r/a \equiv (\psi/\psi_a)^{1/2}]$ in a machine with major radius $R_0=1$ m, with $B_0 (=|\mathbf{B}|$ on axis of 3 Tesla.

- Compute diffusion coef D from $D=\langle (\delta r_i)^2/2 \tau_i \rangle$, where $\langle F \rangle \equiv N_p^{-1} \Sigma_i F_i$ is an avg over all N_p particles, $\delta r_i \equiv r_i - \langle r \rangle$, and τ_i is the run time for particle i, the smaller of its confinement time and a max run time T.
- Take $N_p=3000$, unless otherwise noted.
Take radial ambipolar field $E_r = 0$, & spectrum S_1:

- **Scan in collisionality ν**:

![Graph](image.png)

- Banana \rightarrow plateau regimes appear in $7q_1_{\text{tok}}$.

- $7q_1$ manifests modest $1/\nu$ regime, coalescing with $7q_1_{\text{tok}}$ curve at higher n_{e0}.

- $27j$ shows appreciable $1/\nu$ regime, as one expects for its much larger ripple.
-Scan in pert amplitude α_A:
-Choose $n_{e_0} = 10^{13}/\text{cm}^3$, bit below onset of $1/\nu$ regime in Fig.5.

-Effect of α_A on tokamak consistent with both superposition and ν_{ef} pictures.
-Less effect on stellarator 27j on avg, consistent with ν_{ef} picture. Also, shows more structure than for tokamak.
-Subtracting off $\alpha_A=0$ contribution (from Fig.5):
-Scan in frequency (α_ω):

![Fig.8](image)

- Again subtracting off $\alpha_A=0$ contribution:

![Fig.9](image)

- **7q1_tok** has single central peak of halfwidth $\delta\alpha_\omega \approx 0.03$.
- **7q1** roughly follows 7q1_tok curve, plus additional structure at larger α_ω.
- **27j** manifests 2 significant features:
(a) The structure seen in 7ql is more pronounced in 27j, and shows a succession of peaks, with rough spacing $\Delta \alpha_\omega \approx 0.08$.
(b) For some α_ω, the DW spectrum can REDUCE $D[27j]$ below its $\alpha_\Lambda=0$ value.
Now, compare $E_r=0$ and $E_r\neq 0$, with spectra S_1, S_2. Focus on $27j$ henceforth:

- **Scan in ν:**

![Graph showing log$_{10}(n_e0)$ vs. ν with curves for $\alpha_{E=0}$ and $\alpha_{E=.6}$](image)

$D[33\alpha,34\alpha] \nu$ dens

$\times 10^4$

11.5 12 12.5 13 13.5 14 14.5 15

0 1 2 3 4 5

$\log_{10}(n_e0)$
- Frequency scan \((\alpha_\omega) \):

-Spectrum \(S2 \) produces larger effect than \(S1 \), as expected.

-For \(\alpha_E = 0 \) (puts ions in \(1/\nu \) regime), see \(D^{an} < 0 \).
-For \(\alpha_E = 0.6 \) (puts ions in lower-\(\nu \) “superbanana regime”), see \(D^{an} > 0 \).

-Both results what expect for spectrum enhancing \(\nu_{ef} \).
Some Theory:

- Kinetic eqn: \((\partial_t + L_H)f = Cf \),

\[\text{(1)} \]

with Hamiltonian \(H(z) = H_0 + H_1 \), \(L_H = z^i \partial_i \),
\(z = \{ z^i \} (i=1-6) \) = parametrizing phase-space,
\(H_0 = \text{unperturbed } H \), given by background \(B(x) \),
and \(H_1 = \sum m e \phi_m \cos \eta_m \sim \alpha_A \), \(m = (m,n) \), \(\eta_m = n \zeta - m \theta - \omega_m t \).

- Neoclassical theory follows from (1) with \(H_1 \sim \alpha_A \to 0 \).

- Magnetic field: \(B = \nabla \Phi \times \nabla \theta + \nabla \zeta \times \nabla \psi = \nabla \alpha \times \nabla \psi \),

\[\text{(2)} \]

with \(\alpha = \zeta - q \theta \).

- Parametrize \(z \): Start with
\[z = (\alpha, (e/c) \psi; s, p_{||} \equiv M v_{||}; \theta_g, J_g \equiv (M/c) \mu) , \]

\[\text{(3a)} \]

with \(s \equiv \text{distance along } B, (\theta_g, J_g) = \text{gyro-phase & action. Transform} \)
\((s, p_{||}) \) to \((\theta_b, J_b) = \text{bounce-phase & action:} \)
\[z = (\theta, J), \ \theta = (\bar{\alpha}, \theta_b, \theta_g), \ J = (p_\alpha \equiv (e/c) \bar{\psi}, J_b, J_g) \]

\[\text{(3b)} \]

- For \(H_1 \neq 0 \),
\[\dot{J}_b = - \partial_{\theta_b} H_1 = - i \sum_{1,m} l_b H_{1,m} \exp i (l \cdot \theta - \omega_m t) \],
\[\text{(4a)} \]
\[\dot{E} = \partial_t H_1 = - i \sum_{1,m} \omega_m H_{1,m} \exp i (l \cdot \theta - \omega_m t) \],
\[\text{(4b)} \]

with Fourier amplitudes \(H_{1,m}(J) \),
\(J \equiv (p_\alpha, J_b, J_g) \), \(\theta \equiv (\bar{\alpha}, \theta_b, \theta_g) \), \(l \equiv (l_\alpha, l_b, l_g) \).

- Diffusion coef \(D(J) \) in \(J \)-space due to \(H_1 \),
\[D(J) = \sum_{1,m} l l \pi \delta (l \cdot \Omega - \omega_m) \left| H_{1,m}(J) \right|^2. \]
\[\text{(5)} \]

with \(\Omega(J) \equiv \partial_J H_0 \equiv (\Omega_\alpha, \Omega_b, \Omega_g) \), \(l \equiv (l_\alpha, l_b, l_g) \).
For these \(\omega_m \), have \(l_g=0, \ l_\alpha\to n_\alpha \), and
\(l_b=0, \pm 1, \pm 2, \ldots \) (6a)
- Expect appreciable effect when resonance condition of phase \(l\cdot\theta-\omega_m t \) met:
\[
0=d_t (l\cdot\theta-\omega_m t) = l\cdot\Omega - \omega_m, \quad (6b)
\]
- Projections of \(D(J) \) yield expressions for the various effects noted above, eg,
 - contrib to radial diffusion from \(e^\Psi=\partial_j \Psi \):
 \[
 D^\Psi = e^\Psi \cdot D \cdot e^\Psi = \sum_{l,m} n_\alpha^2 2\pi \delta (l\cdot\Omega - \omega_m) \left| H_{1,m}(J) \right|^2,
 \]
 - energy scattering from \(e^E=\partial_j H_0=\Omega \):
 \[
 D^E = e^E \cdot D \cdot e^E = \sum_{l,m} \omega_m^2 2\pi \delta (l\cdot\Omega - \omega_m) \left| H_{1,m}(J) \right|^2, \quad (7a)
 \]
 - pitch-angle scattering from \(e^J=\partial_j J \):
 \[
 D^J = e^J \cdot D \cdot e^J = \sum_{l,m} l_b^2 2\pi \delta (l\cdot\Omega - \omega_m) \left| H_{1,m}(J) \right|^2 \quad (7c)
 \]
\(\sim \nu_{an} \).
- Preliminary eval’ns of this:

\[D_{\text{anl}}^{\text{J}} \text{ vs } \alpha_\omega \]

\[D_{\text{num}}^{\text{J}}(\lambda=0.15) \]

- Assuming \(D \sim 1/\nu_{\text{ef}} \), compare \(D_{\text{num}} \) with analytic expectation:

\[D_{\text{num}} \text{ vs } \alpha_\omega \]

\[D_{\text{anl}}/D_0 = \nu/ (\nu + \nu_{\text{an}}) \]

\[\lambda=0.31 \]
\[\lambda=0.26 \]
\[\lambda=0.21 \]
\[\lambda=0.15 \]

\(\alpha_{\text{E}}=0, \text{S2} \)
Summary:

-A perturbing ES spectrum affects radial transport differently for tokamaks and stellarators. However, for both, the spectrum produces an effective collisionality $\nu_{ef} = \nu + \nu_{an}$, which enters differently into the radial transport.

-Since $D \sim \nu_{ef} = \nu + \nu_{an}$ in tokamaks, the superposition picture $D = D_{nc} + D_{an}$ is also consistent with the ν_{ef} picture.

-D_{an} in stellarators displays a more complex dependence, exhibiting an oscillatory structure as a function of mode frequency ω out to larger values of ω.

-For some ν and ω, the fluctuations can REDUCE D below D_{nc}, contrary to the superposition intuition, but consistent with the ν_{ef} expectation in the $1/\nu$ regime.

-An analytic theory for ν_{ef} has been developed, providing a prediction for ν_{ef}, and better understanding of the numerical results.