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Outline
• Motivation, Strategy, and Goals

– No disruptions. No external current drive.

Higher pressure.  QA to build on ITER.

• NCSX Unique Characteristics
– 3D QA shaping, PoP scale experiment

– Confinement, stability, surfaces,

divertor, energetic particles.

• NCSX Research Plan
– Near and longer term

• Implications of the Loss of NCSX
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Motivation: What must we learn 
for DEMO?

This requires plasmas with:

• Higher pressure, by at least factor of 2.2
• Less externally driven current

No inductive current

• Essentially no disruptions or ELMs
• Stable confinement of α-particles

• And: high heat flux PFCs, T-breeding cycle, long-
lived materials…

3D Shaping offers solutions to these plasma issues ITER   (~ 2016)

ITER: 500 MW for 400s, gain > 10

DEMO: ~2500 MW, continuous, gain > 25,  
~ same size and field.  
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“Disruptions Will Essentially Have to be 
Eliminated”

D. Campbell et al.
IAEA 2006, Chendu
“Critical Issues for 
Tokamak Power Plants”

Aries studies: disruptions 
must be < 1 per year

• Breeding blanket designs have first-wall thickness of 1.5 – 5 mm  
insufficient thermal mass to avoid melting, doesn’t stop runaways.
• How to guarantee no disruptions at high beta in bootstrap sustained configurations?
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NCSX Strategy:  Use 3D QA shaping 
Combine Advances of Stellarators and Tokamaks

Tokamaks:
• Compact → cost-effective, project to high power density
• Importance of flows ( including self-generated) for turbulence stabilization
• ‘Reversed shear’ to reduce turbulence, increase stability, suppress islands
• ITER results at the reactor scale (particularly ρ* scaling).

Stellarators:
• 3D shaping, from externally-generated helical fields

– No external current drive.
– Robust stability.  Generally disruption-free.

• Quasi-axisymmetric shaping (QA) to keep tokamak-like field structure
• Optimization of 3D QA shaping to obtain desired properties

– Increased stability, good flux surfaces at high-beta 
– Very good QA:  very low effective ripple, orbits and thus neoclassical transport 

very similar to tokamaks, low rotation damping

Goal: Steady-state high-β, good confinement without disruptions 
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NCSX Research Goals
Acquire the physics data needed to assess the attractiveness of
3D QA shaping to control high-beta plasma stability, confinement, sustainment

Understand effect of 3D QA shaping on
• Pressure limits and limiting mechanisms
• Disruptions and operating limits.
• Transport and confinement with low QA ripple. 

Relationship between NCSX and tokamak transport.
• Equilibrium islands and tearing-mode stabilization, role of reversed magnetic shear.
• Divertor operation, compatibility with good core performance.
• Energetic-ion stability and confinement

Determine degree of 3D QA shaping required to achieve
• High β, good confinement, compatible with steady state, without disruption risk
• Can the design constraints be simplified, with improved understanding?

→ Simpler engineering design            
What is the best design for DEMO, in continuum between AT and NCSX ?
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NCSX Designed to Integrate Attractive Properties
of Low Aspect Ratio QA & Address Goals

• 3 periods, R/〈a〉=4.4, 〈κ〉~1.8  , 〈δ〉~1

• Quasi-axisymmetric: transport similar to tokamaks

ripple thermal transport insignificant.           

• Passively stable at β=4.1% to kink, ballooning, 

vertical, Mercier, neoclassical-tearing modes                                           

(steady-state AT β limit ~ 2.7% without feedback)

• Stable for at least β > 6.5% by adjusting coil currents
• Passive disruption stability: equilibrium maintained 

even with total loss of β or IP

These characteristics are unique in the world fusion program
NCSX is only experiment studying QA and synergy with tokamak

G.-Y. Fu
L.P. Ku
A. Reiman
M. Zarnstorff
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NCSX Has Lowest Ripple of All Stellarators

• Low ripple reduces rotation damping.
Produces tokamak-like zonal flow damping   (Mynick).

• NCSX can access εeff a factor of 3 lower, or a factor of 10 higher
• New global confinement scaling for stellarators (ISS04v3) found strong 

dependence on ripple magnitude.  Must involve anomalous transport 
also.
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Low Ripple ⇒ Negligible Ripple Transport

Ion-root 1/ν regime:

Qripple ∝ εeff
1.5 T4.5

Negligible for the standard 
NCSX.
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• 2T gives access to higher 
temperatures, lower collisionality

νi* ~ 0.1

• 2T, 6MW and ne= 4x1019 m-3

projects to Ti (0) > 4 keV
νi* ~ 0.04

ne= 6x1019 m-3
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NCSX has ‘Reversed Shear’ Across Profile
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• QA  ⇒ tokamak like bootstrap current

• ~3/4 of transform (B-poloidal) 
from external coils ⇒ externally controllable

⇒ much less non-linear than AT

• Rotational transform rising to edge  key for 
stabilizing trapped particle and neoclassical 
tearing instabilities 

Explored locally on tokamaks, but cannot be 
achieved across whole plasma using 
current.

• Zonal flow damping scales as q2

(Rosenbluth & Hinton; Mynick) 
⇒ lower in NCSX by factor of ~4 than toks.
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Turbulence Growth Decreases for Higher ∇p 
Similar to Reversed Shear Tokamak

• Designed for ‘reversed shear’ to help 
stabilize turbulent transport

• Linear ion-scale turbulence growth 
rates calculated by FULL-code:

• Electron-drive stabilized by reversed 
shear

• Ion-drive strongly reduced with 
increasing β

− Similar to reversed shear tokamak
.
• In tokamaks with reversed shear, 

low growth rate at finite β allows self-
stabilization driven flows.  Produces 
neoclassical ion-thermal and particle 
transport!

- G. Rewoldt
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NCSX Designed to Produce Good Flux 
Surfaces at High-β

Poincare:  PIES, free boundary
without pressure flattening

< 3% flux loss, 
including effects of 
reversed shear  and       
|| vs. ⊥ transport.

• Explicit numerical design to eliminate resonant field perturbations
• ‘Reversed shear’ configuration ⇒ theoretically, pressure-driven plasma 

currents heal equilibrium islands (not included in PIES calculation)

Computation
boundary

A. Reiman
S. Hudson
D. Monticello
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Initial Non-Linear Kinetic-MHD Calculations
Indicate Possible Higher Pressure-Limit for NCSX

Magnetic
Flux Surfaces

ExB Flow
Surfaces 

NCSX

• Preliminary M3D calculations.
Fixed boundary.

• Finite gyro-radius and ω* stabilize 
equilibrium:  good flux surfaces and 
no instabilities.

• Does not include neoclassical 
effects yet.  Should further increase 
stabilization.

• What will the pressure limit be for 
NCSX? 

<β> = 7%

L. Sugiyama
H. Strauss
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Intrinsic Divertors in Bean-tips
divertor

vacuum vessel

• Divertors already operated 
successfully in LHD and W7-AS.  
Controlled exhaust and impurities.

• Strong flux-expansion always
observed in NCSX bean-shaped     
cross-section.  Allows isolation of 
PFC interaction.

• Similar to expanded 
boundary shaped-tokamak 
configurations

• SOL connection length can be 
~100m.  Long enough to ensure 
low temperature divertor plasma.

• EMC3 collaboration starting for 
divertor analysis/design

Future pumps

Inconel vacuum vessel
350 C bake

Edge Group:
R. Maingi
T. Kaiser
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ARIES-CS: a Competitive, Attractive Reactor
Reference parameters 
for baseline: 
NCSX-like config.
〈R〉 = 7.75 m 
〈a〉 = 1.72 m 
〈n〉 = 4.0 x 1020 m–3

〈T〉 = 6.6 keV T(0)=12 keV
〈B〉axis = 5.7 T
〈β〉 = 6.4%
H(ISS95) = 2.0
H(ISS04) = 1.1

Iplasma = 3.5 MA                                                       
(bootstrap)

P(fusion) = 2.364 GW
P(electric) = 1 GW

Based on NCSX design
48.47.561.375.899.7COE(92)

LiPb/SiCLiPb/SiCLiPb/FSBlanket
-CS-AT-CS-RS-IAries-

Aries-CS Team
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Local

Global

• Higher density in stellarators
– Decreases T

⇒ decreases βα
– Increases Landau damping
on ions

– Increases damping on 
trapped electrons

• Analytic local stability analysis
axisymmetric. N. Gorelenkov et al, 
NF 43, 594 (2003). Curves for
3 configurations ~ identical.

• Global curve normalized to Nova-K
global analysis of ITER.  Includes 
FLR and mode-structure effects.

• Aries-AT has T(0)~31 kev.  More unstable.
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• Modular Coils + BT Solenoid + Poloidal coils
+ Trim coil array.
Coils for shaping control & flexibility

• E.G., can use coils to vary
– effective ripple by factor ~ 30.
– Avg. magnetic shear by factor >  5
– Edge rotational transform by factor of ~4 (vac)

or factor of ~2 (high bootstrap current)

• Reduce kink-instability threshold down to 
β=1% by modifying plasma shape

– either at fixed shear or fixed edge-iota !

• These types of experiments will be key for 
developing and validating our understanding   
of the role of 3D QA shaping.

NCSX Coils Designed 
for Flexibility
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NCSX : A Proof-of-Principal Facility
NCSX designed for 12MW of heating power

– NBI (0.5s), ECH (2s), and ICRF (3s),  to heating ions and electrons
– NBI needed for high-beta access (historically) and 

gives torque for rotation studies
– ECH via collaboration with IPP/Greifswald and GA

Magnetic field strength up to 2T
– Enables experiments separating ρ* scaling of transport 

from ν* and β scalings.
– Gives overlap with tokamak database in dimensionless parameters

Crucial for connecting to tokamak transport understanding,
and forming joint understanding with ITER (particularly ρ* scaling)

Comprehensive Diagnostics
– Time evolving profiles, fluctuations, 3D magnetics, fast ions, edge,…

Divertor

Provide integrated understanding of 3D QA physics at high β, low ν* 
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NCSX Research Timeline

1.   Stellarator Acceptance Testing & First Plasma (Fabrication Proj.)
2.   Magnetic configuration studies

– electron-beam mapping studies
3.   Initial Heating Experiment

– 3MW NBI.  ECH?
– B ≥ 1.2T
– Partial PFC coverage
– Initial diagnostics, magnetics, profiles (ne, Te, Ti, vφ, Prad) & SOL 

4.   High beta Experiments
– 6MW heating, NBI & ECH
– B = 2T; divertor & full PFC coverage
– Improved diagnostics

Approximately 1/3 of research will be carried out by collaborators

FY-08 FY-09 FY-10 FY-11 FY-12

Fabrication Project 
Phase 1 & 2 Equipment

21

FY-13 FY-14 FY-15

1st Plasma

Phase 3 Equipment
Full field, more diags.

4  

Full PFCs & divertor

3  
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FY13 and FY15 Campaigns will 
Investigate Critical Issues

FY13  
• Effect of QA shaping and effective ripple on confinement and rotation 

damping
• Resilience to disruptions from MHD instabilities, density limits
• Initial comparisons between observed & calculated MHD stability 

thresholds

FY15
• β-limits and limiting mechanisms
• Safe operating area against disruptions
• Local transport properties; impurity transport
• Fast ion transport due to effective ripple.  Alfvenic-mode stability.
• Initial divertor effectiveness; scrape-off layer characteristics.

Prioritized plans have been developed for each campaign.
Reviewed at PAC meetings, Research Forum.
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Wide Range of β and ν* Accessible in FY13  
For initial studies

B = 1.2 T,  3MW NBI
*   β=2.7%, ν*I =0.25 with 

HISS04=1.8 HITER-97P=0.8

*   β=2.7%, ν*I =2.5 with 
HISS04=1.2 HITER-97P=0.7

• If get HITER-97P~1.2, can access 
β=4% with 3MW 
(e.g. ITPA H-mode threshold is   

~0.5 MW for NCSX 1.2T)

Contours of HISS04, HITER-97P, and min ν*i

* *

ne (1019 m-3)

<β
> 

 (%
)

*

Stellarator and tokamak scaling laws differ for NCSX, due to strong shaping
D. Mikkelsen
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High-β, low ν*  Plasmas 
Accessible in FY15

B = 1.2 T,  6MW
∗ β=4%, ν*I =0.25 requires  

HISS04=1.8   HITER-97P=0.9

∗ β=4% at Sudo-density 
HISS04=1.1, HITER-97P=0.75

∗ HISS04=0.5 gives β=2.9%
at high collisionality

HITER-97P=1.2 gives access to 
β> 6% with 6MW

Contours of HISS04, HITER-97P, and min ν*i

<β
> 

 (%
)

ne (1019 m-3)

* *

*
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Fast-Ion Alfvenic Stability Experiments
will Start in FY13 with 3MW

• Density scan controls βfast and 
VAlfvén.

• Window around 4–6 x 1013/cm3

for Alfvén mode studies:
– beam ions should be super-

Alfvénic.
– βfast/βthermal > 30% .

• E.g. early TFTR beam driven 
TAE studies were at 
≈ 3 x 1013/cm3, 110 keV
deuterium beams, Btor ≈ 1T 
Vfast/VA ≈ βfast/βthermal ≈ 1

• Will measure ripple transport of 
fast ion, starting in FY15.

1.2 T, HISS04=1
3 MW of 45 kV hydrogen beams
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Broad Diagnostic Set Available in FY13
Initial diagnostic upgrades

• In-vessel + ex-vessel magnetic diagnostics

• Thomson scattering  (ne, Te profiles)

• Imaging x-ray crystal spectrometer (vφ, Ti  profiles)
• UV spectrometer
• PFC-mounted probes

• Filtered 1D and 2D cameras.  Filterscopes.

• IR cameras
• SXR camera
• Interferometer
• Bolometer array

Collaborations on diagnostics are expected and being discussed.
Diagnostics upgrading will continue throughout the Research Program.

Black: shared w/ NSTX
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Candidate diagnostic upgrades for FY15 run
• MSE
• Confined and lost fast ion diagnostics
• Heavy ion beam probe (via NIFS collaboration?)
• Soft x-ray tomography
• Reciprocating Langmuir probe
• CHERS
• Additional Thomson Scattering spatial channels
• Reflectometer or other fluctuation diagnostic
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NCSX will have clear conclusions by 2015

After the FY15 run
Some definitive conclusions on attractiveness of 3D QA shaping

• Do disruptions occur?  ELMs?
• Is the β-limit determined by MHD instabilities?

• Confinement: tokamak-like or stellarator-like?  Effect of εeff

• Is energetic ion confinement as expected?
• Can we spread the divertor footprint?

In the 2015 ~ 2023 time-range
• Detailed physics studies
• Refine and complete scientific understanding of  3D QA shaping
• Document basis for optimization of follow-on devices
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NCSX Complements the Large International 
Superconducting Stellarators

Large Helical Device (Japan)
Non-symmetric

A = 6-7, R=3.9 m,   B=3T

Wendelstein 7-X (Germany)
QP optimized design

A = 11, R=5.4 m,   B=3T

• Focused on steady state, including power handling.  LHD has achieved 54-
minute pulses.

• Optimized for other properties than quasi-symmetry ⇒ flows strongly 
damped

• Not compact.  Extrapolate to larger fusion systems than favored in U.S.
• Neither can directly build on or inform tokamak understanding.
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Implications of the Loss of NCSX

If NCSX is not completed

– There will be no experiment in the world studying 3D QA shaping

– The option to use 3D QA shaping in combination with ITER results to 
solve the DEMO issues will be lost

⇒ Significantly increased risk for 1st DEMO success.

– There will be no PoP scale experiment studying quasi-symmetric or 
compact stellarators, in the US or the world.

– Likely,  the 1st DEMO would not consider 3D shaping to eliminate 
disruptions, or produce steady-state high-Q high-power plasmas.
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Summary: NCSX offers unique contributions
2(a): What critical, unique contributions does NCSX potentially offer for 

addressing the issues?
• Only experiment studying 3D Quasi-Axisymmetric shaping, to build upon ITER and 

tokamak understanding

• Uniquely, will study 3D QA plasma shaping in an integrated context: at high-β, low 
collisionality, and over a range of ρ* (gyro-radius), including a divertor edge

– Ion, electron, and impurity transport and confinement

– Operational limits and mechanisms: β and density
– Divertor effectiveness and control of impurity influx

– Energetic ion confinement and stability

– Effects of error fields

• NCSX offers unique contributions to solve the plasma physics challenges for DEMO, 
lowering the risk of DEMO, and build on ITER and tokamak results

– No disruptions.  Non-disruptive limits.  

– Higher pressure limits without feedback stabilization.

– Sustainment without current drive.

• NCSX has flexibility to understand the degree of 3D shaping needed in the future.
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NCSX will provide timely answers
2(b): Given the proposed plans for operation, what would be the timetable for 

resolving relevant issues identified in (1)?

• NCSX will resolve critical issues in FY13 and FY15:
• Do disruptions occur?  Can ELMs be eliminated?
• Is the β-limit determined by MHD instabilities?
• Is confinement in a strongly shaped QA-torus tokamak-like or 

stellarator-like?  What is the effect of very low εeff ?
• Is energetic ion confinement as expected?
• Can we spread the divertor footprint?

• In the 2015 ~ 2023 time frame, NCSX will provide
• Detailed experimental studies of all the physics issues
• Refine and complete scientific understanding of  3D QA shaping
• Provide the basis for optimization of follow-on devices
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NCSX  fills a critical void
2(c): What are the differences between NCSX and other stellarators?  What is 

the significance of these differences?  Does NCSX fill a critical void in the 
development of the stellarator concept?

• NCSX is the only experiment studying 3D Quasi-Axisymmetric shaping, to build 
upon the tokamak and ITER confinement understanding

• International stellarator experiments are studying other 3D optimization strategies, 
which do not allow low flow-damping and building on tokamak confinement 
understanding.

• NCSX is the only PoP scale quasi-symmetric or compact stellarator experiment, 
studying high-β plasmas with low collisionality, over a range of ρ* (gyro-radius), 
including a divertor edge.

• NCSX fills a critical void in the development of fusion energy: studying 3D QA 
shaping to solve DEMO’s plasma physics challenges, in a way that builds on ITER 
and tokamaks

– No disruptions. No external current drive.  Higher pressure and density.

• NCSX will reduce the risks of DEMO.



 


