National Compact Stellarator Experiment

Preparations for NCSX Research

Hutch Neilson for the NCSX Team

Princeton Plasma Physics Laboratory Oak Ridge National Laboratory

22nd Symposium on Fusion Engineering

Albuquerque, NM

June 20, 2007

Preparations for NCSX Research

G. H. Neilson¹, E. Fredrickson¹, J. Lyon², R. Maingi², N. Pomphrey¹,
B. Stratton¹, R. Strykowsky¹, M. Williams¹, and M. Zarnstorff¹

- 1. Princeton Plasma Physics Laboratory
- 2. Oak Ridge National Laboratory

Topics

- Mission and Design
- Research Plan
- Summary

Compact Stellarators Have a Crucial Role in Fusion R&D

Stellarators solve critical problems for magnetic fusion.

- Steady state without current drive.
- Stable without feedback control or rotation drive. No disruptions.

Compact Stellarators (CS) improve on previous designs.

- Quasi-axisymmetric magnetic field.
- Lower aspect ratio.
 - 4.4 in NCSX vs. ~11 in W7-X.

NCSX Mission

- Assess attractiveness of compact stellarators for MFE.
- Advance 3D plasma physics.

NCSX Plasma 3D geometry has benefits and costs. Both must be understood.

Quasi-Axisymmetric Stellarators Can Build on Tokamak Advances

NCSX Will Test a Quasi-Axisymmetric Stellarator Configuration

- Effective ripple <1.5%.
- Low flow damping, tokamak-like orbits
 ⇒ enhanced confinement.
- Tokamak design tools apply.
 - e.g., NCSX startup simulations using TRANSP.
- Makes full use of tokamak advances, including ITER burning plasma R&D.
 - Facilitates development.
- Aspect ratio approaching tokamaks.

NCSX Physics Design

Configuration is optimized to realize target physics properties.

Configuration Properties • Low $R/\langle a \rangle$ (4.4); 3 periods. • Quasi-axisymmetric w/ low ripple. • Stable at β =4.1% to critical MHD instabilities. • Reverse shear q profile. • 25% of transform from bootstrap. • Good magnetic surfaces at high β . Constrained by engineering feasibility metrics.

NCSX Design Satisfies Physics and Engineering Criteria

- Massively parallel computer optimization used to target required properties.
 - Over 500,000 designs analyzed.
- 18 modular coils (3 shapes)
 - Also TF, PF, and helical trim coils.
- Provides required physics properties:
 - Low aspect ratio.
 - Stable at high beta.
 - Quasi-axisymmetric.
 - Flexible.
- Satisfies coil feasibility metrics :
 - Coil-to-coil spacing
 - Minimum bend radius
 - Tangential NBI access
 - Coil-plasma spacing.

NCSX Plasma and Modular Coils

NCSX Coils Are Designed to Produce Good Surfaces at High β

- Explicit numerical design to eliminate resonant field perturbations
- 'Reversed shear' configuration ⇒ neoclassical healing of equilibrium islands and stabilization of tearing modes (already observed in LHD)
- Robust: good flux surfaces in vacuum and high beta conditions.

NCSX Coils: Flexibility to Vary Physics Properties

Also

- Can externally control iota.
- Can increase ripple by ~10x, preserving stability.
- Can lower theoretical β -limit to 1%.
- Can cover wide operating space in β (to at least 6%), I_P, profile shapes.

Vacuum Vessel Provides Good Diagnostic Access

Physics Requirements

- Access for heating and diagnostic viewing.
- Sufficient interior space for plasma, boundary layer, and PFCs.
- High-vacuum environment for good plasma performance.
- Low field errors.

Design

- About 100 ports, filling all available openings in surrounding magnets.
- Vacuum boundary inside coils.
 - Shell geometry similar to plasma's. Tolerance ±5 mm.
- Bakeable to 350 C.
- Inconel material.

Innovative Magnetic Diagnostic Loop Array for Plasma Reconstruction

- Designed using free-boundary VMEC equilibrium data base.
 – 2,500 cases
- Locations on VV ranked for reconstruction effectiveness using SVD algorithms.

 227 loops / 151 distinct locations/shapes.

NCSX Offers a Robust Divertor Concept

- Strong flux-expansion

 (> 10:1) always observed
 in bean-shaped cross section. Allows isolation
 of PFC interaction.
- Possible divertor plate and liner geometries being studied.

NCSX Machine Design

Major radius: 1.4 m

Performance:

Magnetic Field Strength (B) @ 0.2 s pulse: 2.0 T @ 1.7 s pulse: 1.2 T

Construction Progress:

W. Reiersen, next paper

NCSX Experimental Research

Planned as a series of campaigns, starting with...

- 1. Stellarator Acceptance Testing & First Plasma
- 2. Magnetic configuration studies
 - electron-beam mapping studies
- 3. Initial Heating Experiment
 - 1 3 MW neutral beam heating, partial PFC coverage
 - B ≥ 1.2T, full flexibility
 - Initial diagnostics, magnetics, profiles (n_e , T_e , T_i , v_{ϕ} , P_{rad}) & SOL
- 4. High Beta Experiments
 - ≥3 MW heating (NBI, ECH)
 - B = 2T; divertor
 - Improved diagnostics

Magnetic Configuration Studies

Document key characteristics:

- Vacuum flux surface characteristics
- Control of vacuum field characteristics
 using coil current
 - Good surfaces over wide range of configurations (e.g., iota-scan)
 - Verify rotational transform
- Numerically model as-measured magnetic field.

Auburn University will collaborate and loan equipment.

Initial Heating Campaign

Research Goals:

- Demonstrate basic real-time plasma control
- Characterize confinement and stability
- Characterize SOL properties for first divertor design.
- Investigate momentum transport, effects of quasi-symmetry
- Test MHD stability at moderate β , dependence on 3D shape
- Explore transport barriers, enhanced confinement regimes.
- Investigate local transport and effects of quasi-symmetry.

Equipment and diagnostic upgrades are currently being planned and estimated.

Key Equipment Upgrades for Initial Heating Campaign

- Coil and power systems ($B \ge 1.2T$, full flexibility)
 - Modular coils and TF powered from D-site, PF coils from C-site
 - Central solenoid upgrade.
- Heating systems
 - 3 MW NBI refurbishment and installation
 - 600 kW 70GHz ECH heating via collaboration with IPP (Germany)
- Plasma facing components and NB armor
 - partial liner inside vacuum vessel (~1/3 coverage)
 - 350 C bakeout, wall conditioning, boronization
- Data acquisition and control systems
 - diagnostic control; initial plasma feedback control

Plan: PC-based acquisition; MDS+ organized similar to NSTX.

Key Diagnostic Upgrades for Initial Heating Campaign

- In-vessel magnetic diagnostics + instrument external magnetics diags.
- Thomson-scattering profile (T_e, n_e)
- X-ray crystal spectroscopy. (T_i)
- UV spectrometer
- PFC-mounted probes
- Filtered 1D and 2D cameras. Filterscopes.
- Infrared cameras
- Bolometer array
- Soft x-ray camera
- Diagnostic neutral beam and toroidal CHERS profile (v_{ϕ} , T_i , n_c)
- Motional stark effect
- Heavy ion beam probe (possible collaboration with NIFS, Japan)

Compact Stellarators Provide Unique Opportunities for Fusion Science

Understanding 3D plasma physics important to all of MFE science

- Rotational transform sources (int., ext.): effect on stability, disruptions?
- 3D plasma shaping: stabilize without conducting walls or feedback?
- Magnetic quasi-symmetry: tokamak-like fundamental transport properties?
- Effects of 3-D fast ion resonant modes & Alfvénic modes in 3-D?
- 3D divertors: effects on boundary plasma, plasma-material interactions?

Answering critical fusion science questions, e.g.

- How does magnetic field structure impact plasma confinement?
 plasma shaping? internal structure? self-generated currents?
- How much external control vs. self-organization will a fusion plasma require?

Energy Vision: an Attractive Fusion System

Vision: A steady-state toroidal reactor with

- No disruptions
- No near-plasma conducting structures or active feedback control of instabilities
- No current drive (\Rightarrow minimal recirculating power)
- High power density (~3 MW/m²)

Configuration features

- Rotational transform from coils and self-generated bootstrap current (how much of each?)
- 3D plasma shaping to stabilize instabilities (how strong?)
- Quasi-axisymmetry to reduce ripple transport, alpha losses, flow damping (how low must ripple be?)
- Power and particle exhaust via a divertor (what topology?)
- R/ $\langle a \rangle$ ~ 4 (how low?) and β ~ 4% (how high?)

Design involves tradeoffs.

Need experimental data to quantify, assess attractiveness.

Summary

- NCSX will provide an optimized 3D system to test compact stellarator benefits.
 - Low-R/(a), high-beta, quasi-axisymmetric stellarator plasma.
 - Flexible coil set and vacuum vessel
 - Component geometries determined by physics optimization.
- Compact stellarators provide unique opportunities for fusion science and an attractive reactor vision.