

NCSX Stellarator Core

Design Status and Plans

B. Nelson for the NCSX Team

NCSX Project Review August 15-17, 2007 PPPL

Presentation Outline

- Overview of the Stellarator Core Design
- Status and plans for the major subsystems
 - Recent accomplishments
 - R&D results, fabrication experience and design evolution
 - Design plans timing, cost estimates for ORNL design work
- Summary

Cutaway View of Stellarator Core

Vacuum Vessel design, fab is complete

- All three vacuum vessel sector assemblies (VVSAs) delivered
 - All passed leak check, VVSA-1 also passed thermal cycling, measured deflection confirms analysis
- Auxiliary system design complete
 - Heating and cooling system headers, tubes, clamps, heaters installed on VVSA-1,2, inprocess on VVSA-3
 - Thermal insulation boot design and drawings complete
 - Structural support design complete, in fabrication at PPPL
 - I&C design complete

Cooling design modified to improve performance

- Design uses standard, corrugated stainless tubing with braided reinforcement clamped to vessel
- Saddle clamp modified for better contact to vessel

Modified clamp

.06" square washer

.125 grafoil, softer grade, with setting tool

B. Nelson 5

Only Title III remains for vessel design team

- Design modifications may be needed as fab and assembly operations proceed, and title III hours must be budgeted
- Remaining VV operations/tasks include:
 - Completion of ancillary installation (well underway, risk retired)
 - Installation of temporary and permanent vessel supports
 - Welding of port extensions (demonstrated by VVSA vendor)
 - Measurement, adjustment, and welding of vessel spool pieces during final assembly
- These hours are included as LOE under WBS 18, Field Period Assembly and WBS 74, Machine Assembly Planning and Oversight, based on experience with Title III effort to date

Modular Coil Design has progressed

• Design progress since December

- Completed all component part drawings
- Completed Type A, B, and C assembly drawings and specification (and successful FDR)
- Completed and documented almost all the required analysis
- Completed design and drawings for outboard coil-to-coil bolted connections (and successful FDR)
- Have path forward on inboard coilto-coil connections

Modular Coils must be joined together

- Must react compression inboard, tension outboard, shear everywhere
- Original concept:
 - Coils bolted together to form stiff shell structure, match reamed bushings
 - Shims between adjacent coils provide adjustment for proper alignment

Analysis showed issue with coil-to-coil connections

- No inboard fasteners
- Shear load between coils too high for friction connection in inboard region
 - Shear taken primarily by friction, with some shear in studs
 - No studs in inboard region due to lack of access after assembly
 - Compression load due to magnetic forces not high enough for reasonable friction coefficient
 - Joint may degrade if allowed to slip uncontrollably in service, and studs are overloaded
- Search was on for a design "fix"

Joint AB normal and shear force distribution

No option met all design requirements

- Project searched for good solution for more than one year
- Dozens of ideas were evaluated against the set of requirements
 - Carries all loads (~15 ksi compression, ~ 4000 lbs per running inch shear)
 - Shear stiffness of connection is adequate to avoid overloading of studs
 - Does not connect winding forms electrically
 - Does not exceed permeability limits
 - Retains function over life of machine
 - Does not distort winding forms
 - Can be installed reliably
 - Finite cost and schedule
- None of the options could meet all the requirements simultaneously
- Revisited requirement for electrical insulation in inboard region

Solution is now at hand

- Requirement for electrical isolation at joints relaxed in inboard region at A-A, A-B, and B-C coil-to-coil joints
- Time constant of shell increases from 18 to 27 ms – this is OK
- Welding is best solution for inboard connection
 - No extra machining of coil forms
 - No slipping, won't loosen
 - Reduces potential shear stress in studs

Heitzenroeder to discuss

• Outboard region is still bolted

Outboard region design complete

- Combination of thru-studs and studs in tapped holes
- G10 CR bushing, washer, and coated shim provide electrical insulation
- "Supernut" provides 75 kip pre-load with <40 ft-lb torque and accommodates out-of-parallel condition

B. Nelson 12

- Provides high friction coefficient (~0.6) and electrical insulation
- Shims are "universal" in shape, procured to a range of thicknesses

B. Nelson 13

Analysis indicates workable solution

- Sliding contact at coil-to-coil joints, bolt preload, friction coefficient of 0.4 in bolted regions
- Preload, shear stress calculated at each stud location
- Sliding monitored at flange face
- No sliding in bolted regions, shear load low (< 3 kips vs 9 allowable)

C-C connection is special case

- C-C must retain electrical isolation requirement
- 12 additional studs will be added to each C-C joint, 6 above and 6 below the midplane

Added studs solve C-C connection problem

National Compact Stellarator Experiment

- Slippage negligible, even with low friction coefficient in inboard region
- Access, special tooling being evaluated with mockup (Heitzenroeder)
- Stud tension monitored during operation

C-C joint

Contact slippage plot

B. Nelson 16

Mod coil instrumentation has been specified

- T/C schedule included on each coil assembly drawing
- Fiber-optic strain gages used to check analysis, monitor changes in performance
 - Gages unaffected by magnetic field, need no additional electrical isolation
 - Significant testing indicates some scatter on absolute measurements but very good repeatability over many cycles, at LN2 temperature
 - Gages can be installed in studs (.02 hole EDM-ed) and calibrated to provide very accurate indication of stud preload during operation

Trial installation of fiber optic gage in 1.375 dia stud

B. Nelson 17

Shear Tests planned to confirm joint behavior

- Complete welded connection shim design based on R&D results (Heitzenroeder) - FDR: Sep 07
- Complete C-C connection design using mock-up to study access for bolting and developing long reach tools and procedures – FDR: Jan 08
- Test performance of connection assembly **Tests complete: Oct 07**
- Document analysis and reconcile with final design details and testing results - Closeout: FDR Jan 08
- 1338 hours in MC assembly design, 6632 hours in coil interface hardware design

Design task estimate example

• Based on estimate of drawings, specs, analysis, reviews and average number of hours for each per labor category per task

Engineering and Technician Hours																				
Color Key	ORNL PPPL	Total Engr hours	Total Tech hours	multipiier unit	siappou Liu (Bio) 240 80 hrs/model hrs/m	o Pro-E models (complex)	(dwg briside Datail crowings	6wp uojterijetsu 40 hrs/dwg	o cooling schematic	electrical schematic	18C schematic hrs/dwg	siskieue ssaus 240 hrs/calc	40 hrs/calc	a special analysis 2 (electromagnetic s)	e sesy/install o specs and procedures	ode/supprocurement/fab add of and associated specifications	왕이 아이지 (Paperson and Paperson	and final design reviews	Bunnang 18 hrs/wk	1 hr
Outboard Interface Design IH4-020 INTRF-045	Prepare outboard shim dwgs and release FDR outboard shims resolve and issue shim drawings		30 40 30	0				6										ä		
Bolted Joint Tests 1421-3067 1421-3075 1421-3077 1421-3079 1421-3084 1421-3081 1421-3081	Tension Tests of Bolted Joint Procure 2 studs fijoint test. Use existing part Setup test fixture &perform JHA & pre-job brief Measure joint deflect vs preload & loss of preload Measure joint deflect & preload v. temp @80K Measure joint deflect & preload v. tem (days) at R Document&conduct review of test results Bolt Shear Test at 77k	11	8 4 8 1 24 2 24 2 24 2 24 2 24 2 24 2 50 16 40	8 6 4 4 4 4 4 0 0														1		
1421-3112B 1421-3115B 1421-3119B	Procure/fab parts for test&initial assembly Assemble & test Document test results	3	40 20 10 30	0												1	1			
Inboard Interface Design IH1-001 1421-3125 1421-3127 1421-3132	Coil to coil analysis Determine geometry&location of high COF shims&pl Structural analyses to performance rqmts for bol PDR to review requirements, design,&development	5	20 30 40 40	0 0 0		1						2						1		

Title III remains a major effort for MC design team

- As with VV, design modifications may be needed as fab and assembly operations proceed, and title III hours must be budgeted
- Remaining modular coil operations/tasks include:
 - Completion of coil winding, potting (well underway, risk retired)
 - Installation of strain gages, thermocouples
 - 3-coil and 6-coil assemblies

NCS

- Measurement, adjustment, and connection at CC joint during final machine assembly
- These hours are included as LOE under WBS 18, Field Period Assembly and WBS 74, Machine Assembly Planning and Oversight, based on experience with Title III effort to date

TF coil design complete, procurement ongoing

- Fabrication in process first coil complete and tested
- R&D indicated excellent fatigue strength of winding pack
- Kalish to discuss details in breakout session

B. Nelson 22

PF coil preliminary design ongoing

- Coils are conventional, copper conductor in epoxy glass matrix
- Baseline plan is to procure the new PF coils from industry
- Central solenoid support structure will be modified for NSTX PF1A coils
- Kalish to discuss details in breakout session

TF, PF structure design complete through PDR

Outer PF5 & PF6 Supports

- TF support Brackets are AIAly 5083 -H32 weldments.
- Brackets are bolted directly to the MCWF shell structure or to spacers which bolt to the MCWF.
- Shims are used to provide vertical positioning of the TF coils.

PF4 & CS support

Coil electrical services – concept in place

NCS National Compact Stellarator Experiment

- Electrical feeds via hexapole cable
 - Low stray field, relatively easy to route around machine
 - Used for C1 cold test, teflon insulation provides > 7.5 kV
 - Cold to warm transition occurs in junction boxes below cryostat
- 1848 hours estimated for design (at ORNL) based on engineering experience, detailed breakdown of drawings, analysis tasks, FDR Jul 08

Coil LN2 feeds – concept in place

NCSY National Compact Stellarator Experiment

- Flexible tubing planned to connect coils to LN2 distribution manifolds
 - Same braided corrugated tubing as used on vacuum vessel
 - Electrical Insulation via Teflon tubing
 - Electrical break via G-10 nipple
- 1056 hours estimated for design based on engineering experience, detailed breakdown of drawings, analysis tasks

Base support in preliminary design phase

- Approach will use temporary sliding supports for assembly
- Simplified permanent supports will improve access under core

Temporary, sliding supports

3 field periods retracted

Permanent, stationary supports installed

B. Nelson 27

Field Period Assembly completed at 5 stations

Trial coil-to-coil assemblies made

A-B fitup test

looks like the CAD model

B. Nelson 29

Remaining design effort for field period and final assembly includes drawings and specs

- Mod coils
 - 3-coil, 6-coil, and 18-coil assembly drawings and associated specification of requirement
- Vessel
 - As-built vessel sectors after port extension welding
 - Vacuum vessel spool piece machining drawings
- Field period assembly
 - Assembly drawings of vacuum vessel, coils and structure and associated requirement specification
 - As-built fiducial drawings for field period
- Final assembly
 - Assembly drawing of complete stellarator core and associated requirement specification
 - As-built/assembled drawings/schematics of coil and vessel geometry

B. Nelson **30**

Remaining design effort for field period and final assembly includes drawings and specs (2)

- 4692 hours for assembly design and specs, based on number of drawings, specs, reviews
- Schedule:
 - Station 2 work complete Sep 07
 - Station 3 work complete Nov 07
 - Station 5 work complete Apr 08
 - Final assembly work complete Oct 08

Title III effort for design team will continue through FPA and final assembly

- Field period assembly
 - Design interpretation and modifications as needed
 - 2954 hours of ORNL design engineering, Oct 07 Nov 09
- Final assembly
 - Design interpretation modifications as needed
 - 2505 hours of ORNL design engineering, Jan 09 Jan 11
- Estimates based on average level of effort for designer and engineer for duration of activity, based on title III experience to date with winding forms, VVSAs, etc.

Design of the major stellarator core components is nearing completion

- Vacuum vessel design and procurement complete
- Modular coil design and procurement nearly complete pending final assembly hardware, overall assembly drawings, final R&D and analysis documentation
- TF coils in fabrication
- Remaining risks have been identified and are being mitigated through analysis, confirming R&D, and prototyping
 - Coil-to-coil assemblies are being fit checked with prototypic processes and hardware
 - Prototypic joint hardware is being fatigue tested
- The remaining design, R&D, and Title III effort has been reestimated based on experience and lessons learned to date