|                                                              | NCSX Work Approval                                                                                                                                                                    | Form (                                                                | WAF)                                                                                           |                        |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------|
| WBS Num<br>WBS Title:<br>Job Numb<br>Job Title:<br>Job Manag | ber: 64<br>Bakeout Systems<br>er: 6401<br>Bakeout Systems<br>ger: Mike Kalish                                                                                                         |                                                                       |                                                                                                |                        |
| Description:                                                 | The WBS element consists of the effort to provessel and plasma facing components (PFCs there will be only minimal coverage of the intere of the PFCs is not required for the NCSX Fab | ovide heating<br>). Prior to the<br>erior with carb<br>rication Proje | and cooling to the vacuu<br>e initial auxiliary heating p<br>oon tiles so bakeout capa<br>ect. | m<br>ohase,<br>Ibility |
| Schedule:                                                    | See Attached                                                                                                                                                                          |                                                                       |                                                                                                |                        |
| Approvals:                                                   | Job Manager                                                                                                                                                                           |                                                                       | Date                                                                                           |                        |
|                                                              | Responsible Line Manager                                                                                                                                                              |                                                                       | Date                                                                                           |                        |
|                                                              | Project Manager                                                                                                                                                                       |                                                                       | Date                                                                                           |                        |
|                                                              | Engineering Department Head                                                                                                                                                           |                                                                       | Date                                                                                           |                        |

## NCSX June 2007 ETC TABLE I - DESIGN LABOR

| W        | BS Number: 64                                 |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|----------|-----------------------------------------------|-----------|-----------|---------------|----------------|---------|---------|-------------|-----------|---------|---------|-------|------------|-------|---------|--------|-------|-------|-------|------------|-------------|---------------|----------------|------------|---|---|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| W        | BS Title: Bakeout Syster                      | ns        |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            | 1 |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Jo       | ob Number: 6401                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Jo       | ob Title: Bakeout System                      | S         |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Jo       | ob Manager: Mike Kalish                       |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | Ŭ                                             |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | r                                             |           | ,         |               |                |         |         | 2           |           |         | , ,     |       |            |       |         |        |       |       |       |            |             |               |                |            |   | 1 | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|          |                                               | 1         | 1         |               | 1              | 1       | 1       |             | 1         | 1       | 1       |       |            |       | 1       |        |       |       |       |            |             |               |                |            | + | + |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | 1                                             |           |           | TO BOAT       |                | _       |         |             | 1         |         |         |       | UDG        |       |         |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          |                                               | 61        | <u>10</u> | <u>YU/\$K</u> | 61.716         | 61.714  | 169.7   | 160.7       | 150.5     | 100.50  | 100.44  | HO    | <u>URS</u> | 1167  | 1 60 00 | 120.0  | 120.6 | 70.22 |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          |                                               | 31        | \$1,000   | \$1,/10       | \$1,/10        | \$1,/10 | 108.7   | 108.7       | 150.5     | 128.35  | 108.44  | /8.33 | 180.79     | 110./ | 108.88  | 138.0  | 138.0 | 18.33 |       | l          |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | TASK DESCRIPTION                              | 41MS      | 48MS      | 37STK         | 35TRVL         | 310T    | ORNLEM  | ORNLDS<br>N | EMEM      | EMSM    | EMSB    | EMTB  | EAEM       | EASB  | EEEM    | EESM   | EESB  | EETB  |       |            | B           | asis of Estim | ae             |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          |                                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Des      | sian                                          |           |           |               | t              | +       |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               | 1              | 1          | + | 1 | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|          | Requirements definition                       |           |           |               | }              |         |         |             | 80        |         |         |       |            |       |         |        |       |       | Engin | eering in  | udgement b  | ased on NS'   | TY experience  | 1<br>•0    |   | + | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|          | Requirements deminion                         |           |           |               |                |         |         |             | 100       |         |         |       |            | 120   |         |        |       |       | Engin | leering ju | idgement i  | ased on NS    | TX experience  | <i>e</i> . | - |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | Preliminary Design & Review                   |           |           |               |                |         |         |             | 160       |         |         |       |            | 120   |         |        |       |       | Engin | eering ju  | idgement f  | ased on NS    | I X experience | :e.        |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | Final Design & Review                         |           |           |               |                |         |         |             | 160       |         |         |       |            | 120   |         |        |       |       | Engin | eering ju  | idgement h  | ased on NS    | TX experience  | :e.        |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | EA or ORNL VV Analysis to confirm             |           |           |               |                |         |         |             |           |         |         |       | 160        |       |         |        |       |       | Engin | eering ju  | idgement b  | ased on NS'   | IX experience  | e.         |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | ACC Review                                    |           |           |               |                |         |         |             | 40        |         |         | 40    |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          |                                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   | 1 | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          |                                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   | 1 |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| Pro      | crurement & Fabrication/Installatic           |           |           |               |                | 1       |         |             | 1         |         |         |       |            |       |         |        |       |       |       | 1          |             |               |                |            |   | 1 | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1           |
|          | Procurement lead time and award               |           |           |               | 1              |         |         |             | 1         |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   | 1 | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          |                                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        | +     |       |       |            |             |               |                | +          |   | + |          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|          | Piping and Equipment (See Piping Estimate T # |           |           |               |                |         |         |             |           |         |         | 1830  |            |       |         |        |       |       | See M | latarial T | ako Offe in | Table V Is    | bor from M     | one        |   | + | +        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | 1 ping and Equipment (See Fiping Estimate 1 # | ¢5 000    |           |               |                |         |         |             | +         |         |         | 1030  |            |       |         |        |       |       | Bood  | on Moor    |             | Table V. la   |                |            | + | + |          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|          | 460 VAC POwer Service                         | \$5,000   |           |               |                |         |         |             |           |         |         | 00    |            |       |         |        |       |       | Dased | on Mea     | ns          |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | Local Controls                                | \$3,000   |           |               |                |         |         |             |           |         |         | 80    |            |       |         |        |       |       | Based | on Mean    | ns          |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          |                                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          |                                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| PT       | P Testing                                     |           |           |               |                |         |         |             | 40        |         |         | 120   |            |       |         |        |       |       |       |            |             |               |                |            |   | 1 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          |                                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   | 1 |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|          |                                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   | 1 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | TOTALS                                        | \$165,185 | \$0       | \$0           | \$0            | \$0     | 0       | 0           | 480       | 0       | 0       | 2150  | 160        | 240   | 0       | 0      | 0     | 0     |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          |                                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| 31       |                                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               | 1              |            |   | 1 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0         |
| 51       |                                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       | 1     |       |            |             |               |                |            |   | 1 |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>\$</b> 0 |
|          |                                               |           |           |               | TOTA           | 0       | 0       | 0           | 0         | 0       | 0       | 0     | 0          | 0     | 0       | 0      | 0     | 0     | 0     | 0          | 0           | 0             | 0              | (          | ) | 1 | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0         |
|          |                                               |           |           |               | 1011           |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               | +              |            |   | + |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ф0<br>ф0    |
| L        |                                               |           |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   | 1 | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0         |
| No       | tes:                                          | Notes:    |           |               |                | T       | Т       |             |           |         |         |       |            |       |         |        | Т     |       |       | ſ          |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | 1. Existing PPPI Air Compressor is not a      | accental  | ble, on   | ly 22 C       | CFM avai       | ilable  | at 100  | ) nsi. F    | stimat    | e is ba | ised on | using | a Gast     | Rege  | erativ  | e Blow | er    |       |       |            |             |               | +              | +          | + | + | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | 2 This actimate is based on a Cast Linu       | or oper-  | tine e    | + +h~ ~       | ondition       | e ehe   |         | "Colc       | Summer    | 2 10 De | ab      | Joing |            | ge    | v       |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| I        | 2. This estimate is based on a Gast blow      | ei opera  | aung a    | it the C      | onaition       | IS SNO  | wn in   | Caic        | Summ      | ary li  | สม      |       |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| I        | 3. Estimate assumes once through air sy       | /stem     |           |               |                |         |         | l           | I         | I       | 1       |       |            |       |         |        |       |       |       |            |             |               | l              |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | 4. Estimate assumes 3" 304 SS pipe will       | be adeq   | uate (    | may re        | equire cl      | hange   | es by p | bermea      | ability i | ssues   | )       |       |            |       |         |        |       |       |       |            |             |               | <u> </u>       |            |   | 1 | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 1        | 5. Estimate assumes 150 C VV Bakeout          | T         |           |               | I T            | T       | Т       |             |           |         |         |       |            |       |         |        | Т     |       | 1     | ſ          |             |               |                |            |   | 1 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | 6. Estimate assumes no VV cooling is re       | quired    |           |               |                |         | 1       |             |           |         |         |       |            |       |         |        |       |       | 1     | 1          |             |               | 1              |            |   | 1 | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | 7. Sizing based on approx. 7 kw heat load     | d         |           |               | ++             |         |         |             |           |         |         |       |            |       |         |        |       |       | 1     |            |             |               | 1              | 1          | 1 | 1 | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | 8 Estimate assumes no instrumentation         | -         |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               | 1              | 1          | - | 1 | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| <u> </u> | 0. Boy 1 added Dining Support Towers          |           |           |               | <u> </u> −−− − |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   | 1 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|          | a new radded Fiping Support Towers            |           |           |               | <u>├</u>       |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                | +          |   | + | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 1        | The work is a good to come Brooke and Ro      |           | ,         |               |                |         |         |             | 1         |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          | and the second se |             |
|          | TO. NEV 2 Added Cerainic Breaks and Be        | llows     |           |               |                |         |         |             |           |         |         |       |            |       |         |        |       |       |       |            |             |               |                |            |   |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |

### NCSX June 2007 ETC TABLE II - Materials and Subcontracts

| WBS Number: 64                   |  |                   |
|----------------------------------|--|-------------------|
| WBS Title: Bakeout Systems       |  |                   |
| Job Number: 6401                 |  |                   |
| Job Title: Bakeout Systems       |  |                   |
| Job Manager: Mike Kalish         |  |                   |
|                                  |  |                   |
| Materials and Subcontracts (M&S) |  | Basis of Estimate |
|                                  |  |                   |
| M&S in Table I                   |  |                   |
|                                  |  |                   |
|                                  |  |                   |

# NCSX June 2007 ETC TABLE III - Fabrication/Assembly Installation

| In-house Fabrication and            | d Assen | nbly and | I Installa | ation |  |  |  |  |
|-------------------------------------|---------|----------|------------|-------|--|--|--|--|
|                                     |         |          |            |       |  |  |  |  |
| Fabrication & Installation in Table |         |          |            |       |  |  |  |  |
|                                     |         |          |            |       |  |  |  |  |
|                                     |         |          |            |       |  |  |  |  |

## NCSX June 2007 ETC TABLE IV - Uncertainty of Estimate and Residual Risk Assessment

WBS Number: 64 WBS Title: Bakeout Systems Job Number: 6401 Job Title: Bakeout Systems Job Manager: Mike Kalish

| Uncertainty of the Estin | mate |        |     |                    |                                                                                                        |
|--------------------------|------|--------|-----|--------------------|--------------------------------------------------------------------------------------------------------|
|                          |      |        |     | <b>Uncertainty</b> |                                                                                                        |
|                          | High | Medium | Low | Range (%)          | Comments/Other Considerations                                                                          |
| Design Maturity          |      |        | Х   |                    | This is a preconceptual design using a new (to PPPL) type of blower and heater.                        |
|                          |      |        |     | -20%/+40%          |                                                                                                        |
|                          |      |        |     |                    | Due to the high thermal excursions, difficult permeability requirements and safety considerations, the |
| Design Complexity        |      | х      |     |                    | design is considered medium complexity.                                                                |

Note: High/Medium/Low uncertainty assessment from Job Manager. Uncertainty range based on AACEI recommended practice 18R-97 as amended for NCSX.

| Residual Impacts |                  |               |                 |                   |         |       |            |       |  |
|------------------|------------------|---------------|-----------------|-------------------|---------|-------|------------|-------|--|
|                  |                  |               |                 |                   | Cost Ir | npact | Schedule I | mpact |  |
|                  |                  | Likelihood of |                 |                   |         | -     |            | -     |  |
| Job              | Risk Description | Occurring     | Mitigation Plan | Basis of estimate | Low     | High  | Low        | High  |  |
|                  |                  |               |                 |                   |         |       |            |       |  |

NONE

#### Notes:

- [1] Low cost and schedule impacts are considered the minimum (0-percentile) impacts should the event occur.
- High cost and schedule impacts are considered the maximum (100-percentile) impacts should the event occur
  [2] Cost impacts should be entered as man-hours (by demographic) and M&S direct cost under basis of estimate. Cost impacts should NOT include standing army costs which are separately calculated from the schedule impact
- Project control is reponsible for quantifying the low and high cost impacts based on the labor hours and M&S identified [3] The schedule impacts should be entered as the min and max impacts on the critical path.

If there is no critical path impact then the schedule entries should be zero.

[4] Likelihood of occurrence should be entered consistent with our risk classification methodology, i.e. VL= Very Likely (P>80%), L=Likely (80%>P>40%), U=Unlikley (40%>P>10%), VU=Very Unlikely (P<10%), NC=Non-credible (P<1%)</p> WBS Number: 64 WBS Title: Bakeout Systems Job Number: 6401 Job Title: Bakeout Systems Job Manager: Mike Kalish

Estimate Backup



6401 HEAT TORCH Bakeout System REV3.xls

Piping Estimate page 1 of 1

5/21/2007 1:37 PM

## NCSX June 2007 ETC TABLE V - Basis of Estimate

Calculations

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Michael Kalish 7/2/2004                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THE FOLLOWING CALCULATIONS DETERMINE THE MASS FLOW RATE THROUGH THE<br>INTERMAL PFC TUBING GIVEN THE PRESSURE DROP AND air PROPERTIES<br>For air proof hypothematic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Now solve for the Reynolds # in terms of the friction factor.                                                                                                                                                                                                          |
| Calculate the pressure drop through the PFC tubing. Adjust k and $\mu_h$ for Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\operatorname{Re}_{\mathbf{l}} := \frac{\operatorname{scor}}{\sqrt{t}} \left[ \frac{3.7 \operatorname{exp}\left(\frac{-1.6129}{\sqrt{t}}\right) - \frac{e}{0}}{2} \right] \qquad \operatorname{Re}_{\mathbf{l}} = 1.086 \times 10^4 \qquad \text{for furthermitting}$ |
| $k_{10} = .015 \frac{BTU}{hr \cdot h R} \frac{273 + T_{initet}}{273 + 20} \qquad c_{p, 10} = .241 \cdot \frac{BTU}{(lb, R)} \qquad \mu_{1h} = .38 \cdot 16 \cdot 10^{-\frac{6}{3}} \cdot b f \frac{Sec}{R^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $R_{01} := \frac{64}{r} \qquad \qquad R_{01} = 1.619 \times 10^3 \qquad \text{for lattice flow}$                                                                                                                                                                       |
| viscosity from CRC handbook or (Marks pg 3-36) $\mu_h=39.210^{-8}\frac{M}{R^2}\mu_h=0.0167centipolse$ changes with temp. but not pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Check that Re is turbutent if not use Re=64/f                                                                                                                                                                                                                          |
| $\rho_{h,at,atd} := .076 \frac{b}{h^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reference pg. 3-55 Marks to determine if flow is laminar or turbulent Generally turbulance begins at Re>2000                                                                                                                                                           |
| D Tinlet Toutlet T 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $Re:=if(Re_{1}<2000,Re_{1},Re_{2}) \qquad \qquad Re=1.086\times10^{4} \qquad f=0.04$                                                                                                                                                                                   |
| $p = n_{0} p_{1} + n_{0} p_{1} = \frac{1}{2} p_{1} p_{1} - \frac{1}{2} p_{2} + \frac{1}{2} p_{1} p_{1} - \frac{1}{2} p_{2} p_{1} - \frac{1}{2} p_{2} p_{2} - \frac{1}{2} p_{2} p_{2} p_{1} - \frac{1}{2} p_{2} p_{2} p_{2} - \frac{1}{2} p_{2} p_{2} p_{2} p_{2} p_{2} - \frac{1}{2} p_{2} p_{2$ | $v_{\rm c} = \frac{\mu \cdot Re}{D_{\rm c}\rho} \qquad v = 65.295 \frac{ft}{sec} \qquad \mbox{The velocity of the fluid}$                                                                                                                                              |
| rm rm_si_su_c (14.7 ) (Tavg_sys) ph = 0.098 - Tinlet = 200.0 Toutet = 150.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $Q_{12} = v A$ $Q = 1.411 \frac{h^3}{min}$ $mf_{12} = Q_{12} p$ $mf = 2.303 \times 10^{-3} \frac{lb}{sec}$ $mf = 1.044 \frac{9m}{sec}$                                                                                                                                 |
| $\epsilon_{CU} \coloneqq 10 \cdot 10^{-6} \cdot \text{ft}  \text{for drawn copper tube} \qquad \epsilon_{pipe} \coloneqq 150 \cdot 10^{-6} \cdot \text{ft} \; \text{for seel pipe} \; \; (ref. 3-56 \; \text{Marks})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $H_{f=} = \frac{v^2}{2}$ $H_{f} = 66.257 \text{ ft}$ $H_{f=0} \cdot g = 0.045 \text{ psi}$ $A = 0.052 \text{ in}^2$                                                                                                                                                    |
| $d_p = 0.257$ in $d_p = 0.653$ cm inner diameter of cooling passage br a round cross-section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2·g                                                                                                                                                                                                                                                                    |
| L = 216.535 in hydraulic length of opening under evaluation $p_h = 1.568 \times 10^{-3} \frac{gm}{m^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To find f.t for <u>turbulant flow</u> calculate the relative roughness, eld, and use along with the Re # to look up f on the<br>graph (og. 3-55 Marks or pg. A-24 of the Crane tech, manual)                                                                           |
| $\mu := \mu_h$ $\rho := \rho_h$ $\epsilon := \epsilon_{Ope}$ input Values $v := E$ or $\rho$ $P_{avg} = 14.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mf·N = 1.592 × 10 <sup>3</sup> <sup>b</sup> / <sub>2</sub> dt <sub>allow</sub> = 50 K                                                                                                                                                                                  |
| Calculate the Reyrotors # using the Velocity and diameter. Use the hydraulic<br>diameter if it is not a round cross-section<br>(a) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hr                                                                                                                                                                                                                                                                     |
| For a round pipe $d_p = 0.257$ in Area <sub>p</sub> := $\left(\frac{v_p}{2}\right) \cdot \pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P <sub>cool</sub> := m=cp-dt <sub>allow</sub> P <sub>cool</sub> :N = 10.117 kW mt = 1.044 × 10 - sec                                                                                                                                                                   |
| $D := d_p$ A := Area p Input Hydraulic Diameter and Area A = 0.052 in <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |
| Now calculate the flow through a pipe when only the head loss through the pipe and pipe size is known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |
| $D = 0.257 \text{ m}  \rho = 5.665 \times 10^{-5} \frac{b}{m_{1}^{3}} \qquad p = 1.5 \text{ psi} \qquad \kappa = 1.5 \times 10^{-4} \text{ ft}  \mu = 3.916 \times 10^{-7} \frac{b \text{ fsec}}{m_{1}^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                        |
| $f_{\mathbf{y}} := \frac{\mathbf{p}}{\mathbf{p} \cdot \mathbf{q}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |
| $f_{12} = \begin{bmatrix} \frac{c}{2} \log \left[ \frac{c}{3\pi} + \frac{2.51}{D(r_{abc} - D)^{3}} \right]^{-2}  This equation solves for f (tricton factor) when the flow rate is an increase but the head loss is known, check for laminar flow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |
| $\begin{bmatrix} p^{-1} + \frac{2}{2} g^{-1} \eta^{-1} \frac{1}{2} \end{bmatrix} \qquad f = 0.04 \qquad \frac{\epsilon}{D} = 7.004 \times 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |
| 1 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 df 4                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        |

## NCSX June 2007 ETC TABLE V - Basis of Estimate

| Now solve for the Reynolds # in terms of the friction factor.                                                                                                                                                                                      | Indiate Nation 1                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Re_{l^{-}} = \frac{9.287}{\sqrt{t}} - \left(3.7 \exp(\frac{-115120}{\sqrt{t}}\right) - \frac{e}{0}\right)^{-1}  Re_{l} = 1.086 \times 10^{4} \qquad \text{for turbulent flow}$                                                                    | NPUTS N= 96.2 number parallel paths                                                                                                                                                                                            |
| $R_{0 1} \coloneqq \frac{64}{f} \qquad \qquad R_{0 } = 1.619 \times 10^3 \qquad \text{for laminar flow}$                                                                                                                                           | T <sub>surface</sub> = 150 T <sub>inlet</sub> = 200 In deg C<br>Tobover_in = 20 Touriet = Tsurface + 0004 Touriet = 150                                                                                                        |
| Check that Re is turbulent if not use Re=64/f                                                                                                                                                                                                      | P <sub>Sys</sub> = 15 psi avg pressure in NCSX                                                                                                                                                                                 |
| Reference pg. 3-55 Marks to determine if flow is laminar or turbulent Generally turbulance begins at Re>2000                                                                                                                                       | $p_{h} = 0.098 \frac{b}{h^{3}}$ $p_{h} = 1.568 \frac{4g}{m^{3}}$ $T_{inlet} \frac{9}{5} + 32 = 392$ $T_{outet} \frac{9}{5} + 32 = 302.001$                                                                                     |
| $Re:=if(Re_{1}<2000,Re_{1},Re_{1}) \qquad \qquad Re=1.086\times 10^{4} \qquad f=0.04$                                                                                                                                                              | dl <sub>allow</sub> = (T <sub>infet</sub> - T <sub>outlet</sub> ) K dl <sub>allow</sub> = 89.999 R dl <sub>allow</sub> = 50 K Temp. drop of helium across vessel                                                               |
| $v_{1=} \frac{\mu \cdot Re}{D_{P}}$ $v = 65.295 \frac{R}{sec}$ The velocity of the fluid                                                                                                                                                           | L = 5.5 m fotus length of tubing $d_p=0.257~\text{in}~d_p=0.853~\text{cm}$                                                                                                                                                     |
| $Q_{-1} = v A$ $Q_{-1} = 1.411 \frac{e^3}{min}$ $mf_{-1} = Q_{-p}$ $mf_{-2} = 2.303 \times 10^{-2} \frac{b}{sec}$ $mf_{-1} = 1.044 \frac{gm}{sec}$<br>$H_1 = \frac{v^2}{v}$ $H_2 = 66.257 \text{ ft}$ $H_2 \Rightarrow g_{-1} = 0.052 \text{ m}^2$ | p = 1.5 poi dp across tubes<br>OUTPUTS                                                                                                                                                                                         |
| Y  Ind 11 for <u>tarbulet flow</u> calculate the relative roughness, eld, and use along with the Re # to look up f on the  ph (og. 3-50 Marka or og. A-24 of the Chans tech, manual)                                                               | v = 65 $\frac{4}{\sec}$ Velocity of Helium P <sub>Burg</sub> = 14 psi v = 19.952 $\frac{m}{\sec}$<br>Q N = 271 $\frac{8^2}{mn}$ Volume fourable of helium Q <sub>2014</sub> Bower = 349 $\frac{8^2}{mn}$ Pow at inist to Bower |
| $f N = 1.592 \times 10^3 \frac{lo}{hr}$ $dt_{allow} = 50 \text{ K}$                                                                                                                                                                                | $\label{eq:relation} \Omega_c  \rho \cdot N = 1.592 \times  10^3  \frac{b}{hr} \qquad \mbox{Mass Flow} \qquad \rho = 0.096  b  h^3$                                                                                            |
| $\label{eq:cod} cod := mf  c_{pr}  d t_{allow} \qquad P_{cod}  H = 10.117  kW \qquad mf = 1.044 \times 10^{-3}  \frac{kg}{sec}$                                                                                                                    | P <sub>conv</sub> N = 10 kW From M4t Dowedon heat transfer<br>must equal emergy balance<br>P <sub>cool</sub> N = 10 kW From mc <sub>y</sub> dt                                                                                 |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                |

2 of 4

4 of 4

## NCSX June 2007 ETC TABLE V - Basis of Estimate

