EM Design and Resistive Stability

E. Fredrickson PPPL

NCSX Physics Validation Review March 26-27, 2001

Overview

- EM requirements for NCSX
 - External kink stability should not be affected by vacuum vessel or plasma facing components.
 - Present design appears satisfactory; v.v. is outside marginal point and time constant is short.
- Tearing Mode Calculations
 - Simulated start-up and reference design equilibria analyzed with simple Δ ' code.
 - Reference design equilibrium projected to have island
 3.6% of minor radius; < 0.2% with neoclassical effects.

EM Requirements

- An important physics goal of NCSX is demonstration of an equilibrium intrinsically stable to the external kink.
- External kink growth rate should be shorter than pulse length; stability calculations (Fu) suggest:
 - wall time-constant should be less than ≈ 10 ms, or;
 - plasma-conducting wall separation should be greater than about 8-10 cm.
- Present design v.v. \approx 9 cm on inboard side,
 - wall time-constant for m=2 is < 2 ms; much shorter than pulse length, as in many present tokamaks.

Stability calculations with conformal wall show marginal point \approx 6-9 cm

- Marginal point depends somewhat on profiles.
- This calculation at $\beta = 5\%$.
- Other equilibria have marginal points closer to plasma
- Vacuum vessel ≈ 9 cm on inside, further over all of outboard side.

Tearing Mode Stability

- 100 200 kA of plasma current driven by bootstrap effect, inductively or NBCD.
- Current driven tearing modes possible, *e.g.*,
 1 = 0.5 surface in plasma.
- For negative shear, the bootstrap current is predicted to be stabilizing.
- Stability calculations done on discharge evolution simulation (Lazarus) and "li383" equilibria.

Stability calculations use simple model, as successfully used in W7-AS

- The Δ ' code is a quasi-cylindrical, low β model.
- Neoclassical terms added; benchmarked in normal shear, axisymmetric experiments.
- Single tearing modes not seen in negative shear regions for TFTR/DIII-D, but double tearing modes are seen.
- Shape and non-axisymmetry effects are not so well benchmarked; W7-AS studies found reasonable agreement.

Moving rational surface towards core reduces island size

- Island width is small in target equilibrium (3.6%).
- Island width is negligible with neoclassical corrections (<0.2% a).
- Calculations were done by scaling t(r) in li383 reference design equilibrium.

Simulated islands small even without neoclassical term in start-up.

- TRANSP used to simulate bootstrap, ohmic currents through start-up.
- 2/1 mode marginally stable, other modes are stable.
- Island negligible without neoclassical term, even smaller with.
- Equilibrium slightly different than "li383".

Summary

- Present vacuum vessel location is outside marginal stability point for external kink
- Wall time-constant short, much less than pulse length.
- Startup phase predicted stable to tearing modes.
- Equilibrium phase essentially stable with neoclassical effects.