RF heating options for NCSX.

Dick Majeski PPPL

NCSX Physics Validation Review March 2001

RF options for NCSX Introduction

- Two candidates: High Frequency Fast waves and Mode Conversion.
 - <u>Neither</u> option in baseline budget
- High frequency fast waves:
 - Electron heating (independent of ion species)
 - Low field side coupler easy to install
 - Insensitive to magnetic field (easy field scans w/ identical heating)
 - But no ion heating option, a completely new system (expensive)
- Mode conversion:
 - Electron or ion heating
 - Highly localized: profile control, transport measurements
 - Potential for localized flow shear generation
 - Very modest cost; maximal use of rf site credits
 - But high field side coupler: more difficult to fit it in & access it

High frequency fast wave (HFFW) heating for NCSX

- NCSX will typically operate at moderate susceptibility ($\omega_{pe}^2/\Omega_{ce}^2 \sim 5$)
- Very high frequency fast waves can be strongly damped
- High power, CW sources are available for frequencies > 300 MHz
- Here we look at 350 MHz HHFW heating for NCSX
 - Compact launchers on the low field side, probably folded waveguide
 - Isolators can be implemented at this frequency
 - » Reduces sensitivity of the system to changes in the plasma edge
 - Current drive capability is significant
 - » Aid in countering NB-driven currents
 - Available sources are typically CW, > 1 MW per tube
- Extension of HHFW experiments now under test on NSTX

HFFW absorption is strong over a wide range in T_e , B_0

Note that this is a higher harmonic (20th vs ~13th) than NSTX HHFW heating. Electron β is much lower than for NSTX HHFW.

NCSX PVR March, 2001 Current drive efficiency is predicted to be more than adequate to counter 100 kA of NB driven current.

350 MHz, $n_e(0) = 6 \times 10^{19} \text{ m}^{-3}$ (parabolic^{0.5}), $T_e(0) = T_i(0) = 2 \text{ keV}$, 2%NBI H

Dispersion relations for 350 MHz in NCSX indicate that coupling to slow waves will be negligible

- 350 MHz dispersion relation Only slow wave in evidence is the IBW; LH root is at very high k_{\perp} . 10⁴ Real k_perp (m⁻¹) vs R NCSX PVR R (m) 1.87 0 March, 2001
- Launch issues:
 - Required N_{||} = 4-4.8 for $k_{||} = 30 - 35 \text{ m}^{-1}$
 - Modest density (2-3 ×10¹⁸ m⁻³) at cutoff - fast wave propagates well into the edge plasma
- But: vacuum fields have a very short evanescence length (< 1cm)
 - Coupler must be tight¹y coupled to the edge. No vacuum gap.
- A movable coupler (à la lower hybrid) would be need to accommodate different equilibria

Possible launcher types for HFFW system ORNL RF Technology

ORNL 433 MHz folded-waveguide dipole launcher for FTU

NCSX PVR March, 2001

ORNL concept for strap-loaded waveguide for FIRE

Mode conversion heating for NCSX

- Prior designs for the coils dictated low field side access HFFW
- New solution enabled by the present modular coil design:
 - Mode conversion with a **high field side launch** in a two-ion plasma
 - » A fast wave launched from the high field side of NCSX will mode convert to a strongly damped ion Bernstein wave at the ion-ion hybrid layer with near 100% efficiency
 - Possible ion systems: D-H, H-³He (favored)
- Scenarios surveyed can produce ion or electron heating, narrow or broad deposition profiles, localized current drive
- Inexpensive.
 - Modify existing FMIT units to permit 20-30 MHz operation, share with NSTX
- Builds on experience gained with mode conversion from TFTR, C-mod, CHS, W7AS, LHD...

Mode conversion in 90%D/10%H can provide electron heating with broad deposition profiles

Mode conversion in H - He3 can provide central ion or electron heating over a wide range of magnetic field

March, 2001

- Electron heating
 - Broad or localized deposition, in H He3 or H D
 - Can be core localized down to 1.3 T (for 20 MHz)
- Current drive
 - Best suited to scenarios with localized power deposition (H He3)
 - On or off axis
- Ion heating
 - High minority concentrations can be heated to minimize tails
 - » Typically 10% H or He3 minorities
 - He3 minority scenario would lend itself to investigation of shear flow effects

Antennas for mode conversion - comblines

Insert antennas here

- Very close coupling of the antenna to the plasma is not needed
 - •Longer evanescence lengths for vacuum fields
 - •Combline antenna *favors* weak coupling

NCSX PVR March, 2001

RF heating summary

Tradeoffs between HFFW and mode conversion for NCSX

- Installation:
 - HFFW compatible with compact, low field side antennas.
 - High field side M-C antennas leave needed room for diagnostic access
- Flexibility:
 - Insensitivity to magnetic field without retuning favors HFFW for ease of use during magnetic field scans
 - M-C provides more physics tools (Local/broad deposition profiles, ion/electron heating, local current drive at variable radius, possible shear flow drive...
 - Launcher for M-C would be tolerant of wide plasma-antenna gap
- Cost:
 - M-C is much cheaper: <\$2M for 6 MW vs ~\$18M for 6 MW HFFW
- Conclusion: If the antennas fit, go with mode conversion as the RF upgrade option

NCSX PVR March, 2001